[1] Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigmentspecific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r 2 from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r 2 from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are 'unpackaged' by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r 2 > 0.5) for 7 pigments and very good correlations (r 2 > 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations. Citation: Moisan, J. R., T. A. H. Moisan, and M. A. Linkswiler (2011), An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,
Phytoplankton functional diversity plays a key role in structuring the ocean carbon cycle and can be estimated using measurements of phytoplankton functional type (PFT) groupings. Concentrations of 18 phytoplankton pigments were calculated using a linear matrix inversion algorithm, with an average r 2 value of 0.70 for all pigments with p-values below the statistical threshold of 0.05. The inversion algorithm was then used with a chlorophyll-based absorption spectra model and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) chlorophyll observations to calculate phytoplankton pigment concentrations in an area of the Atlantic Ocean off the United States east coast. Pigment distributions were analyzed to assess the distribution of PFTs. Five unique PFTs were found and delineated into three distinct offshore, transition, and open ocean groups. Group 1 (Diatoms) had highest abundance along the coast. Group 2 (prymnesiophytes, prokaryotes, and green algae) was a year-round stable offshore community that extended at reduced levels into the coast. Group 3 (dinoflagellates) dominated offshore between the Groups 1 and 2. Phytoplankton communities were delineated into coastal and offshore populations, with Group 2 having a dampened seasonal cycle, relative to the coastal populations. Shannon Diversity Indices (H) for the PFTs showed both spatial and temporal variability and had a clear non-linear relationship with chlorophyll. Diversity levels varied seasonally with changes in chlorophyll a levels. Peak PFT H was observed on the shelf where frontal features dominate, with diversity levels declining nearshore and offshore. This region marks an ecotone for phytoplankton in the study domain, and is associated with the coastal-side boundary of dinoflagellate dominance. Highest levels of diversity were observed in the tidally well-mixed regions of the Gulf of Maine and along a band that ran along the shelf region of the study area that was narrowest in the summer periods and broadened during the winter. These peak diversity zones were associated with moderate levels (∼0.8 mg m −3 ) of chlorophyll a. While the sign in the linear trends in chlorophyll between 2002 and 2016 varied depending on the region, the trends in the PFT H values were nearly all negative due to the non-linear relationship between chlorophyll levels and H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.