This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.
Konstas AA, Neimark MA, Laine AF, Pile-Spellman J. A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain. J Appl Physiol 102: 1329 -1340, 2007. First published December 14, 2006; doi:10.1152/japplphysiol.00805.2006.-A threedimensional mathematical model was developed to examine the transient and steady-state temperature distribution in the human brain during selective brain cooling (SBC) by unilateral intracarotid freezing-cold saline infusion. To determine the combined effect of hemodilution and hypothermia from the cold saline infusion, data from studies investigating the effect of these two parameters on cerebral blood flow (CBF) were pooled, and an analytic expression describing the combined effect of the two factors was derived. The Pennes bioheat equation used the thermal properties of the different cranial layers and the effect of cold saline infusion on CBF to propagate the evolution of brain temperature. A healthy brain and a brain with stroke (ischemic core and penumbra) were modeled. CBF and metabolic rate data were reduced to simulate the core and penumbra. Simulations using different saline flow rates were performed. The results suggested that a flow rate of 30 ml/min is sufficient to induce moderate hypothermia within 10 min in the ipsilateral hemisphere. The brain with stroke cooled to lower temperatures than the healthy brain, mainly because the stroke limited the total intracarotid blood flow. Gray matter cooled twice as fast as white matter. The continuously falling hematocrit was the main time-limiting factor, restricting the SBC to a maximum of 3 h. The study demonstrated that SBC by intracarotid saline infusion is feasible in humans and may be the fastest method of hypothermia induction. therapeutic hypothermia; ischemic stroke; spatial and temporal brain temperature distributions THE CENTRAL NERVOUS SYSTEM is vulnerable to focal and global ischemia resulting from acute ischemic stroke (63) and cardiac arrest (21). Therapeutic hypothermia has been repeatedly shown to be effective in limiting the damage of global and focal ischemia in animal models and clinical studies (6,21).In most clinical studies, hypothermia is induced by surface cooling. Although this is the simplest and most cost-effective option for inducing hypothermia (14), it has two major drawbacks. 1) Several hours are required to reach the target body core temperature. All studies report a 3-to 7-h period for cooling to 32-34°C (26, 52); however, endovascular systemic cooling may be able to accelerate the rate of cooling and improve the efficacy of hypothermia (15).2) The incidence of adverse effects, such as impaired immune function, decreased cardiac output, pneumonia, and cardiac arrhythmias/bradycardias, is high (14, 31). Selective brain cooling (SBC) without reducing body core temperature can theoretically address both problems of whole body cooling.Different methods for SBC have been reported (18). Noninvasive methods most commonly used are cooling caps and helmets. However, th...
BACKGROUND AND PURPOSE: Endovascular brain cooling as a method for rapid and selective induction of hypothermic neuroprotection has not been systematically studied in humans. In this clinical pilot study we investigated the feasibility, safety, and physiologic responses of short-term brain cooling with IC-CSI.
The feasibility of rapid cerebral hypothermia induction in humans with intracarotid cold saline infusion (ICSI) was investigated using a hybrid approach of jugular venous bulb temperature (JVBT) sampling and mathematical modeling of transient and steady state brain temperature distribution. This study utilized both forward mathematical modeling, in which brain temperatures were predicted based on input saline temperatures, and inverse modeling, where brain temperatures were inferred based on JVBT. Changes in ipsilateral anterior circulation territory temperature (IACT) were estimated in eight patients as a result of 10 min of a cold saline infusion of 33 ml/min. During ICSI, the measured JVBT dropped by 0.76±0.18°C while the modeled JVBT decreased by 0.86±0.18°C. The modeled IACT decreased by 2.1±0.23°C. In the inverse model, IACT decreased by 1.9±0.23°C. The results of this study suggest that mild cerebral hypothermia can be induced rapidly and safely with ICSI in the neuroangiographical setting. The JVBT corrected mathematical model can be used as a non-invasive estimate of transient and steady state cerebral temperature changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.