Particle filter techniques are common methods used to estimate the evolving state of nonlinear, non-Gaussian time-variant systems by utilizing a periodic sequence of noisy measurements. The accuracy of particle filter methods has often been shown to be superior to other state estimation techniques, such as the extended Kalman filter (EKF), for many applications. Unfortunately, the high computational cost and highly nondeterministic runtime behavior of particle filters often preclude their use in hard, real-time environments, where filter response must meet the strict timing requirements of the application. Particle filter algorithms are composed of three main stages: prediction, update, and resampling. General purpose graphics processing units (GPGPUs) have been successfully employed in previous research to accelerate the computation of both the prediction and update stages by exploiting their natural fine-grain parallelism. This research focuses on accelerating the resampling stage for GPGPU execution, which has been much more difficult to parallelize due to it's apparent inherent sequentially. This paper introduces a novel GPGPU implementation of the systematic and stratified resampling algorithms that exploit the monotonically increasing nature of the prefix-sum and the evolutionary nature of the particle weighting process to allow the re-indexing portion of the algorithms to occur in a two-phase, multi-threaded manner. This resulting measured factor of performance improvement for the systematic and stratified algorithms was 15x and 32x, respectively, over the serial implementations. INDEX TERMS Graphics processing units, parallel algorithms, parallel architectures, parallel programming, particle filters, state estimation, resampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.