Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.
SUMMARY Introduction Heterosexual HIV-1 transmission is an inefficient process with rates reported at <1% per unprotected sexual exposure. When transmission occurs, systemic infection is typically established by a single genetic variant, taken from the swarm of genetically distinct viruses circulating in the donor. Whether that founder virus represents a chance event or was systematically favored is unclear. Our work has tested a central hypothesis that founder virus selection is biased toward certain genetic characteristics. Rationale If HIV-1 transmission involves selection for viruses with certain favorable characteristics, then such advantages should emerge as statistical biases when viewed across many viral loci in many transmitting partners. We therefore identified 137 Zambian heterosexual transmission pairs, for whom plasma samples were available for both the donor and recipient partner soon after transmission, and compared the viral sequences obtained from each partner to identify features that predicted whether the majority amino acid observed at any particular position in the donor was transmitted. We focused attention on two features: viral genetic characteristics that correlate with viral fitness, and clinical factors that influence transmission. Statistical modeling indicates that the former will be favored for transmission, while the latter will nullify this relative advantage. Results We observed a highly significant selection bias that favors the transmission of amino acids associated with increased fitness. These features included the frequency of the amino acid in the study cohort, the relative advantage of the amino acid with respect to the stability of the protein, and features related to immune escape and compensation. This selection bias was reduced in couples with high risk of transmission. In particular, significantly less selection bias was observed in women and in men with genital inflammation, compared to healthy men, suggesting a more permissive environment in the female than male genital tract. Consistent with this observation, viruses transmitted to women were characterized by lower predicted fitness than those in men. The presence of amino acids favored during transmission predicted which individual virus within a donor was transmitted to their partner, while chronically infected individuals with viral populations characterized by a predominance of these amino acids were more likely to transmit to their partners. Conclusion These data highlight the clear selection biases that benefit fitter viruses during transmission in the context of a stochastic process. That such biases exist, and are tempered by certain risk factors, suggests that transmission is frequently characterized by many abortive transmission events in which some target cells are nonproductively infected. Moreover, for efficient transmission, some changes that favored survival in the transmitting partner are frequently discarded, resulting in overall slower evolution of HIV-1 in the population. Paradoxically, by...
BackgroundClinical laboratory reference intervals have not been established in many African countries, and non-local intervals are commonly used in clinical trials to screen and monitor adverse events (AEs) among African participants. Using laboratory reference intervals derived from other populations excludes potential trial volunteers in Africa and makes AE assessment challenging. The objective of this study was to establish clinical laboratory reference intervals for 25 hematology, immunology and biochemistry values among healthy African adults typical of those who might join a clinical trial.Methods and FindingsEqual proportions of men and women were invited to participate in a cross sectional study at seven clinical centers (Kigali, Rwanda; Masaka and Entebbe, Uganda; two in Nairobi and one in Kilifi, Kenya; and Lusaka, Zambia). All laboratories used hematology, immunology and biochemistry analyzers validated by an independent clinical laboratory. Clinical and Laboratory Standards Institute guidelines were followed to create study consensus intervals. For comparison, AE grading criteria published by the U.S. National Institute of Allergy and Infectious Diseases Division of AIDS (DAIDS) and other U.S. reference intervals were used. 2,990 potential volunteers were screened, and 2,105 (1,083 men and 1,022 women) were included in the analysis. While some significant gender and regional differences were observed, creating consensus African study intervals from the complete data was possible for 18 of the 25 analytes. Compared to reference intervals from the U.S., we found lower hematocrit and hemoglobin levels, particularly among women, lower white blood cell and neutrophil counts, and lower amylase. Both genders had elevated eosinophil counts, immunoglobulin G, total and direct bilirubin, lactate dehydrogenase and creatine phosphokinase, the latter being more pronounced among women. When graded against U.S.-derived DAIDS AE grading criteria, we observed 774 (35.3%) volunteers with grade one or higher results; 314 (14.9%) had elevated total bilirubin, and 201 (9.6%) had low neutrophil counts. These otherwise healthy volunteers would be excluded or would require special exemption to participate in many clinical trials.ConclusionsTo accelerate clinical trials in Africa, and to improve their scientific validity, locally appropriate reference ranges should be used. This study provides ranges that will inform inclusion criteria and evaluation of adverse events for studies in these regions of Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.