BackgroundA central aim for studying runs of homozygosity (ROHs) in genome-wide SNP data is to detect the effects of autozygosity (stretches of the two homologous chromosomes within the same individual that are identical by descent) on phenotypes. However, it is unknown which current ROH detection program, and which set of parameters within a given program, is optimal for differentiating ROHs that are truly autozygous from ROHs that are homozygous at the marker level but vary at unmeasured variants between the markers.MethodWe simulated 120 Mb of sequence data in order to know the true state of autozygosity. We then extracted common variants from this sequence to mimic the properties of SNP platforms and performed ROH analyses using three popular ROH detection programs, PLINK, GERMLINE, and BEAGLE. We varied detection thresholds for each program (e.g., prior probabilities, lengths of ROHs) to understand their effects on detecting known autozygosity.ResultsWithin the optimal thresholds for each program, PLINK outperformed GERMLINE and BEAGLE in detecting autozygosity from distant common ancestors. PLINK's sliding window algorithm worked best when using SNP data pruned for linkage disequilibrium (LD).ConclusionOur results provide both general and specific recommendations for maximizing autozygosity detection in genome-wide SNP data, and should apply equally well to research on whole-genome autozygosity burden or to research on whether specific autozygous regions are predictive using association mapping methods.
Autozygosity occurs when two chromosomal segments that are identical from a common ancestor are inherited from each parent. This occurs at high rates in the offspring of mates who are closely related (inbreeding), but also occurs at lower levels among the offspring of distantly related mates. Here, we use runs of homozygosity in genome-wide SNP data to estimate the proportion of the autosome that exists in autozygous tracts in 9,388 cases with schizophrenia and 12,456 controls. We estimate that the odds of schizophrenia increase by ∼17% for every 1% increase in genome-wide autozygosity. This association is not due to one or a few regions, but results from many autozygous segments spread throughout the genome, and is consistent with a role for multiple recessive or partially recessive alleles in the etiology of schizophrenia. Such a bias towards recessivity suggests that alleles that increase the risk of schizophrenia have been selected against over evolutionary time.
Inbreeding depression refers to lower fitness among offspring of genetic relatives (1). This reduced fitness is caused by the inheritance of two identical chromosomal segments (autozygosity) across the genome, which may expose the effects of (partially) recessive deleterious mutations. Even among outbred populations, autozygosity can occur to varying degrees due to cryptic relatedness between parents (2). Using dense genome-wide SNP data, we examined the degree to which autozygosity associated with measured cognitive ability in an unselected sample of 4,854 participants of European ancestry. We used runs of homozygosity—multiple homozygous SNPs in a row— to estimate autozygous tracts across the genome. We found that increased levels of autozygosity predicted lower general cognitive ability, and estimate a drop of 0.6 standard deviations among the offspring of first cousins (p = 0.003 - 0.02 depending on the model). This effect came predominantly from long and rare autozygous tracts, which theory predicts as more likely to be deleterious than short and common tracts. Association mapping of autozygous tracts did not reveal any specific regions that were predictive beyond chance after correcting for multiple testing genome-wide. The observed effect size is consistent with studies of cognitive decline among offspring of known consanguineous relationships (3). These findings suggest a role for multiple recessive or partially recessive alleles in general cognitive ability, and that alleles decreasing general cognitive ability have been selected against over evolutionary time.
BackgroundTraditional genome-wide association studies are generally limited in their ability explain a large portion of genetic risk for most common diseases. We sought to use both traditional GWAS methods, as well as more recently developed polygenic genome-wide analysis techniques to identify subsets of single-nucleotide polymorphisms (SNPs) that may be involved in risk of cardiovascular disease, as well as estimate the heritability explained by common SNPs.MethodsUsing data from the Framingham SNP Health Association Resource (SHARe), three complimentary methods were applied to examine the genetic factors associated with the Framingham Risk Score, a widely accepted indicator of underlying cardiovascular disease risk. The first method adopted a traditional GWAS approach - independently testing each SNP for association with the Framingham Risk Score. The second two approaches involved polygenic methods with the intention of providing estimates of aggregate genetic risk and heritability.ResultsWhile no SNPs were independently associated with the Framingham Risk Score based on the results of the traditional GWAS analysis, we were able to identify cardiovascular disease-related SNPs as reported by previous studies. A predictive polygenic analysis was only able to explain approximately 1% of the genetic variance when predicting the 10-year risk of general cardiovascular disease. However, 20% to 30% of the variation in the Framingham Risk Score was explained using a recently developed method that considers the joint effect of all SNPs simultaneously.ConclusionThe results of this study imply that common SNPs explain a large amount of the variation in the Framingham Risk Score and suggest that future, better-powered genome-wide association studies, possibly informed by knowledge of gene-pathways, will uncover more risk variants that will help to elucidate the genetic architecture of cardiovascular disease.
We evaluated the evidence for association between a manually curated set of genes and nicotine behaviors in European and African Americans. Although no genes were associated after multiple testing correction, this study has several strengths: by manually curating a set of genes we circumvented the limitations inherent in many pathway analyses and tested several genes that had not yet been examined in a human genetic study; gene-based tests are a useful way to test for association with a set of genes; and these genes were collected based on literature review and conversations with experts, highlighting the importance of scientific collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.