The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade®) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, che-motherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom’s macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid®), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.
Purpose: Plinabulin (NPI-2358) is a vascular disrupting agent that elicits tumor vascular endothelial architectural destabilization leading to selective collapse of established tumor vasculature. Preclinical data indicated plinabulin has favorable safety and antitumor activity profiles, leading to initiation of this clinical trial to determine the recommended phase 2 dose (RP2D) and assess the safety, pharmacokinetics, and biologic activity of plinabulin in patients with advanced malignancies.Experimental Design: Patients received a weekly infusion of plinabulin for 3 of every 4 weeks. A dynamic accelerated dose titration method was used to escalate the dose from 2 mg/m 2 to the RP2D, followed by enrollment of an RP2D cohort. Safety, pharmacokinetic, and cardiovascular assessments were conducted, and Dynamic contrast-enhanced MRI (DCE-MRI) scans were performed to estimate changes in tumor blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.