Most of the original forest and woodland cover on the western slopes of New South Wales and the northern plains of Victoria has been cleared for agriculture (wheat, sheep and cattle) and what remains is highly fragmented and modified by a long history of disturbance. Over the past three decades, native eucalypt trees and shrubs have been planted extensively in a part of this region to provide a range of environmental benefits. Our aim was to determine the extent to which these plantings could improve biological diversity in agricultural landscapes in south-eastern Australia and to identify the variables influencing their effectiveness.We sampled birds at 120 sites encompassing the range of available patch sizes, stand ages, floristic and structural conditions, and habitat attributes for revegetated areas and remnants of native vegetation, and we compared these to nearby paddocks. Eucalypt plantings were found to provide significant improvements in bird population density compared with cleared or sparsely treed paddocks, and mixed eucalypt and shrub plantings had similar bird communities to remnant native forest and woodland in the region. Birds displayed a strong response to patch size, with both larger (Ն5-20 ha) eucalypt plantings and larger (Ն5-20 ha) remnants having more species and more individuals per unit area than smaller (<5 ha) patches of these vegetation types. Older (10-25 years) plantings had more bird species and individuals than young (<10 years) plantings. The distance from remnant forest and woodland (habitat connectivity) appeared to be an important variable influencing bird species richness in eucalypt plantings. The main differences were due to the greater numbers of species classified as woodland-dependent in the larger-sized patches of plantings and remnants. Eucalypt plantings provided useful habitat for at least 10 declining woodland-dependent species, notably for the Speckled Warbler, Red-capped Robin and Rufous Whistler. The Brown Treecreeper and Dusky Woodswallow appeared to be the species most limited by the extent of remnant forest and woodland in the region. Plantings of all shapes and sizes, especially those larger than 5 ha, have an important role to play in providing habitat for many bird species. Restoration efforts are more likely to be successful if eucalypt plantings are established near existing remnant vegetation.
Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional‐scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently‐collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2‐km spatial filter and by modeling separately two subregions separated by the 500‐m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground‐truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground‐truth sites. Similarly, a site habitat quality index at ground‐truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site‐based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field‐validated models of similar resolution would assist in guiding management of conservation‐dependent species.
The koala (Phascolarctos cinereus) is a charismatic, high-profile species whose conservation needs are commonly perceived to be incompatible with logging. However, koala biology and the results of chronosequence studies elsewhere suggest that this species may tolerate a degree of habitat alteration caused by logging. In this study, 30 koalas, five in each of six areas available for logging within a mixed white cypress pine (Callitris glaucophylla)-Eucalyptus forest in north-western New South Wales, were radio-tracked for one year during 1997-1998 to determine their movements, homerange sizes and tree preferences. Five months after the study began, three of these areas were logged selectively for sawlogs and thinnings of the white cypress pine, a tree that is important to koalas for daytime shelter. This removed about onequarter of the stand basal area, but the eucalypt component was unaffected. The remaining three areas were left undisturbed as controls. Radio-tracking continued in all six areas for another seven months. Koalas continued to occupy all or part of their previous home-ranges after selective logging, and home-range sizes remained similar between logged and unlogged areas. Home-ranges for both sexes overlapped and were ~12 ha for males and 9 ha for females. Koala survival and the proportions of breeding females were similar in logged and unlogged areas. The principal food trees of the koala were red gums, mainly Eucalyptus blakelyi and E. chloroclada, and the pilliga box (E. pilligaensis), none of which were logged in this study. These results suggest that selective logging for white cypress pine does not appear to adversely affect koala populations and that koalas may not be as sensitive to logging as previously thought. Further work is required to determine thresholds in the level of retention of koala food trees in logging operations. Koalas continue to occupy their previous home-ranges after selective logging in Callitris-Eucalyptus forest
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.