Introduction: To evaluate the accuracy of deep convolutional neural networks (DCNNs) for detecting neck of femur (NoF) fractures on radiographs, in comparison with perceptual training in medically-na€ ıve individuals. Methods: This study extends a previous study that conducted perceptual training in medically-na€ ıve individuals for the detection of NoF fractures on a variety of dataset sizes. The same anteroposterior hip radiograph dataset was used to train two DCNNs (AlexNet and GoogLeNet) to detect NoF fractures. For direct comparison with perceptual training results, deep learning was completed across a variety of dataset sizes (200, 320 and 640 images) with images split into training (80%) and validation (20%). An additional 160 images were used as the final test set. Multiple pre-processing and augmentation techniques were utilised. Results: AlexNet and GoogLeNet DCNNs NoF fracture detection accuracy increased with larger training dataset sizes and mildly with augmentation. Accuracy increased from 81.9% and 88.1% to 89.4% and 94.4% for AlexNet and GoogLeNet respectively. Similarly, the test accuracy for the perceptual training in top-performing medically-na€ ıve individuals increased from 87.6% to 90.5% when trained on 640 images compared with 200 images. Conclusions: Single detection tasks in radiology are commonly used in DCNN research with their results often used to make broader claims about machine learning being able to perform as well as subspecialty radiologists. This study suggests that as impressive as recognising fractures is for a DCNN, similar learning can be achieved by top-performing medically-na€ ıve humans with less than 1 hour of perceptual training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.