Multiparty Session Types (MPST) are a typing discipline for communication-centric systems, guaranteeing communication safety, deadlock freedom and protocol compliance. Several works have emerged which model failures and introduce fault-tolerance techniques. However, such works often make assumptions on the underlying network, e.g., TCP-based communication where messages are guaranteed to be delivered; or adopt centralised reliable nodes and an ad-hoc notion of reliability; or address only a single kind of failure, e.g., node crash failures. In this work, we develop MAGπ-a Multiparty, Asynchronous and Generalised π-calculus, which is the first language and type system to accommodate in unison: (i) the widest range of non-Byzantine faults, including message loss, delays and reordering; crash failures and link failures; and network partitioning; (ii) a novel and most general notion of reliability, taking into account the viewpoint of each participant in the protocol; (iii) the spectrum of network assumptions from the lowest UDP-based network programming to the TCP-based application level. We prove subject reduction and session fidelity; process properties, (deadlock freedom, termination); failure-handling safety and reliability adherence.
Multiparty Session Types (MPST) are a typing discipline for communication-centric systems, guaranteeing communication safety, deadlock freedom and protocol compliance. Several works have emerged which model failures and introduce fault-tolerance techniques. However, such works often make assumptions on the underlying network, e.g., assuming TCP-based communication where messages are guaranteed to be delivered; or adopting centralised reliable nodes and ad-hoc notions of reliability; or only addressing a single kind of failure, such as node crashes. In this work, we develop MAG$$\pi $$ π —a Multiparty, Asynchronous and Generalised $$\pi $$ π -calculus, which is the first language and type system to accommodate in unison: (i) the widest range of non-Byzantine faults, including message loss, delays and reordering; crash and link failures; and network partitioning; (ii) a novel and most general notion of reliability, taking into account the viewpoint of each participant in the protocol; (iii) a spectrum of network assumptions from the lowest UDP-based network programming to the TCP-based application level. We prove subject reduction and session fidelity; process properties (deadlock freedom, termination, etc.); failure-handling safety and reliability adherence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.