This paper describes the architecture and implementation of an autonomous passenger vehicle designed to navigate using locally perceived information in preference to potentially inaccurate or incomplete map data. The vehicle architecture was designed to handle the original DARPA Urban Challenge requirements of perceiving and navigating a road network with segments defined by sparse waypoints. The vehicle implementation includes many heterogeneous sensors with significant communications and computation bandwidth to capture and process high-resolution, high-rate sensor data. The output of the comprehensive environmental sensing subsystem is fed into a kinodynamic motion planning algorithm to generate all vehicle motion. The requirements of driving in lanes, three-point turns, parking, and maneuvering through obstacle fields are all generated with a unified planner. A key aspect of the planner is its use of closed-loop simulation in a rapidly exploring randomized trees algorithm, which can randomly explore the space while efficiently generating smooth trajectories in a dynamic and uncertain environment. The overall system was realized through the creation of a powerful new suite of software tools for message passing, logging, and visualization. These innovations provide a strong platform for future research in autonomous driving in global positioning system-denied and highly dynamic environments with poor a priori information. C 2008 Wiley Periodicals, Inc.
This paper describes the architecture and implementation of an autonomous passenger vehicle designed to navigate using locally perceived information in preference to potentially inaccurate or incomplete map data. The vehicle architecture was designed to handle the original DARPA Urban Challenge requirements of perceiving and navigating a road network with segments defined by sparse waypoints. The vehicle implementation includes many heterogeneous sensors with significant communications and computation bandwidth to capture and process high-resolution, high-rate sensor data. The output of the comprehensive environmental sensing subsystem is fed into a kino-dynamic motion planning algorithm to generate all vehicle motion. The requirements of driving in lanes, three-point turns, parking, and maneuvering through obstacle fields are all generated with a unified planner. A key aspect of the planner is its use of closed-loop simulation in a Rapidly-exploring Randomized Trees (RRT) algorithm, which can randomly explore the space while efficiently generating smooth trajectories in a dynamic and uncertain environment. The overall system was realized through the creation of a powerful new suite of software tools for message-passing, logging, and visualization. These innovations provide a strong platform for future research in autonomous driving in GPS-denied and highly dynamic environments with poor a priori information.
In this paper we describe a formulation of extrinsic camera calibration that decouples rotation from translation by exploiting properties inherent in urban scenes. We then present an algorithm which uses edge features to robustly and accurately estimate relative rotations among multiple cameras given intrinsic calibration and approximate initial pose. The algorithm is linear both in the number of images and the number of features.We estimate the number and directions of vanishing points (VPs) with respect to each camera using a hybrid approach that combines the robustness of the Hough transform with the accuracy of expectation maximization. Matching and labeling methods identify unique VPs and correspond them across all cameras. Finally, a technique akin to bundle adjustment produces globally optimal estimates of relative camera rotations by bringing all VPs into optimal alignment. Uncertainty is modeled and used at every stage to improve accuracy.We assess the algorithm's performance on both synthetic and real data, and compare our results to those of semi-automated photogrammetric methods for a large set of real hemispherical images, using several consistency and error metrics.
The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demonstration of dexterous mobile robots executing a variety of tasks aided by a remote human operator using only data from the robot's sensor suite transmitted over a constrained, fieldrealistic communications link. We describe the design considerations, architecture, implementation and performance of the software that Team MIT developed to command and control an Atlas humanoid robot. Our design emphasized human interaction with an efficient motion planner, where operators expressed desired robot actions in terms of affordances fit using perception and manipulated in a custom user interface. We highlight several important lessons we learned while developing our system on a highly compressed schedule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.