Fault-tolerant quantum computation requires qubit measurements to be both high fidelity and fast to ensure that idling qubits do not generate more errors during the measurement of ancilla qubits than can be corrected. Towards this goal, we demonstrate single-shot readout of semiconductor spin qubits with 97% fidelity in 1.5 μs. In particular, we show that we can engineer donor-based single-electron transistors (SETs) in silicon with atomic precision to measure single spins much faster than the spin decoherence times in isotopically purified silicon (270 μs). By designing the SET to have a large capacitive coupling between the SET and target charge, we can optimally operate in the "strong-response" regime to ensure maximal signal contrast. We demonstrate single-charge detection with a signal-to-noise ratio (SNR) of 12.7 at 10 MHz bandwidth, corresponding to a SET charge sensitivity (integration time for SNR ¼ 2) of 2.5 ns. We present a theory of the shot-noise sensitivity limit for the strong-response regime which predicts that the present sensitivity is about one order of magnitude above the shot-noise limit. By reducing cold amplification noise to reach the shot-noise limit, it should be theoretically possible to achieve high-fidelity, single-shot readout of an electron spin in silicon with a total readout time of approximately 36 ns.
The realization of controllable fermionic quantum systems via quantum simulation is instrumental for exploring many of the most intriguing effects in condensed-matter physics1–3. Semiconductor quantum dots are particularly promising for quantum simulation as they can be engineered to achieve strong quantum correlations. However, although simulation of the Fermi–Hubbard model4and Nagaoka ferromagnetism5have been reported before, the simplest one-dimensional model of strongly correlated topological matter, the many-body Su–Schrieffer–Heeger (SSH) model6–11, has so far remained elusive—mostly owing to the challenge of precisely engineering long-range interactions between electrons to reproduce the chosen Hamiltonian. Here we show that for precision-placed atoms in silicon with strong Coulomb confinement, we can engineer a minimum of six all-epitaxial in-plane gates to tune the energy levels across a linear array of ten quantum dots to realize both the trivial and the topological phases of the many-body SSH model. The strong on-site energies (about 25 millielectronvolts) and the ability to engineer gates with subnanometre precision in a unique staggered design allow us to tune the ratio between intercell and intracell electron transport to observe clear signatures of a topological phase with two conductance peaks at quarter-filling, compared with the ten conductance peaks of the trivial phase. The demonstration of the SSH model in a fermionic system isomorphic to qubits showcases our highly controllable quantum system and its usefulness for future simulations of strongly interacting electrons.
Controlling electron tunneling is of fundamental importance in the design and operation of semiconductor nanostructures such as field effect transistors (FETs) and quantum computing device architectures. The exponential sensitivity of tunneling with distance requires precise fabrication techniques to engineer the desired device dimensions to achieve the appropriate tunneling resistances/tunnel rates. This is particularly important for high fidelity spin readout and qubit exchange in quantum computing architectures. Here, it is shown by combining precision fabrication techniques with accurate atomistic modeling, predictive device design criteria are achieved at atomic length scales. Such a tool is useful when devices become more complex or have arbitrary shapes/geometries. In particular, in this study, atomic precision patterning of monolayer degenerately phosphorus-doped silicon tunnel junctions patterned by scanning tunnelling microscopy lithography and tight-binding nonequilibrium Green's function (TB-NEGF) modeling is combined to describe the dependence of tunnel junction resistance R T on junction length. An agreement with experiment to within a factor of 2 over 4 orders of magnitude in R T is found, and this model allows to accurately determine the barrier height V 0 = 57.5 ± 1 meV and lateral seam s xy = 0.39 ± 0.01 nm in these nanoscale junctions. This study confirms the use of the TB-NEGF formalism to accurately model highly doped atomically precise tunnel junctions in silicon. Further applications of this model will enable improved device performance at the nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.