Abstract. Sexual selection operates by acting on variation in mating success. However, since selection acts on wholeorganism manifestations (i.e., performance) of underlying morphological traits, tests for phenotypic effects of sexual selection should consider whole-animal performance as a substrate for sexual selection. Previous studies have revealed positive relationships between performance and survival, that is, natural selection, but none have explicitly tested whether performance may influence reproductive success (through more matings), that is, sexual selection. Performance predicts dominance in some species, implying the effects of sexual selection, but how it does so has not been established, nor is it certain whether performance might be a by-product of selection for something else, for example, elevated circulating testosterone levels. We investigated the potential for sexual selection on sprint speed performance in collared lizards (Crotaphytus collaris), considering the potential mediating effects of circulating hormone levels. Among territorial, adult male collared lizards, only sprint speed significantly predicted territory area and number of offspring sired as determined by genetic paternity analysis. Body size, head size, and hind limb length had no effect. Neither plasma testosterone levels nor corticosterone levels correlated with sprint speed, territory area, or number of offspring sired. Thus, our results provide a direct link between whole-animal performance and reproductive success, suggesting that intrasexual selection can act directly on sprint speed performance and drive the evolution of underlying morphological traits.
Life-history traits such as offspring size, number and sex ratio are affected by maternal feeding rates in many kinds of animals, but the consequences of variation in maternal diet quality (rather than quantity) are poorly understood. We manipulated dietary quality of reproducing female lizards (Amphibolurus muricatus; Agamidae), a species with temperature-dependent sex determination, to examine strategies of reproductive allocation. Females maintained on a poor-quality diet produced fewer clutches but massively (twofold) larger eggs with lower concentrations of yolk testosterone than did conspecific females given a high-quality diet. Although all eggs were incubated at the same temperature, and yolk steroid hormone levels were not correlated with offspring sex, the nutrient-deprived females produced highly male-biased sex ratios among their offspring. These responses to maternal nutrition generate a link between sex and offspring size, in a direction likely to enhance maternal fitness if large body size enhances reproductive success more in sons than in daughters (as seems plausible, given the mating system of this species). Overall, our results show that sex determination in these animals is more complex, and responsive to a wider range of environmental cues, than that suggested by the classification of 'environmental sex determination'.
The green anol (Anolis carolinensis) is an excellent reptilian model for studying reproductive behavior and the neural and muscular morphology that supports it. This lizard has been the subject of behavioral and ecological study for more than 100 yr, and a rich literature exists on its natural history. Both courtship and copulatory behaviors reveal sex and seasonal differences, which allow for the study of mechanisms regulation naturally occurring variation in performance at multiple levels within a single animal model. Green anoles are readily obtained due to their abundance in the wild; once in the laboratory, they are easily maintained, bred, and reared. Background on the natural history and husbandry of this lizard is provided, and the authors' research program on the regulation of reproductive anatomy and behavior is reviewed, Discussion includes the similarities and differences in the mechanisms mediating both structure and function compared with more traditional animal models. This type of comparative research will make it possible to identify the fundamental principles governing reproductive biology, thus advancing both basic and applied knowledge.
Sexual selection operates by acting on variation in mating success. However, since selection acts on whole-organism manifestations (i.e., performance) of underlying morphological traits, tests for phenotypic effects of sexual selection should consider whole-animal performance as a substrate for sexual selection. Previous studies have revealed positive relationships between performance and survival, that is, natural selection, but none have explicitly tested whether performance may influence reproductive success (through more matings), that is, sexual selection. Performance predicts dominance in some species, implying the effects of sexual selection, but how it does so has not been established, nor is it certain whether performance might be a by-product of selection for something else, for example, elevated circulating testosterone levels. We investigated the potential for sexual selection on sprint speed performance in collared lizards (Crotaphytus collaris), considering the potential mediating effects of circulating hormone levels. Among territorial, adult male collared lizards, only sprint speed significantly predicted territory area and number of offspring sired as determined by genetic paternity analysis. Body size, head size, and hind limb length had no effect. Neither plasma testosterone levels nor corticosterone levels correlated with sprint speed, territory area, or number of offspring sired. Thus, our results provide a direct link between whole-animal performance and reproductive success, suggesting that intrasexual selection can act directly on sprint speed performance and drive the evolution of underlying morphological traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.