Summary The yellow and red feather pigmentation of many bird species [1] plays pivotal roles in social signaling and mate choice [2, 3]. To produce red pigments, birds ingest yellow carotenoids and endogenously convert them into red ketocarotenoids via an oxidation reaction catalyzed by a previously unknown ketolase [4–6]. We investigated the genetic basis for red coloration in birds using whole-genome sequencing of red siskins (Spinus cucullata), common canaries (Serinus canaria), and 'red factor' canaries, which are the hybrid product of crossing red siskins with common canaries [7]. We identified two genomic regions introgressed from red siskins into red factor canaries that are required for red coloration. One of these regions contains a gene encoding a cytochrome P450 enzyme, CYP2J19. Transcriptome analysis demonstrates that CYP2J19 is significantly upregulated in the skin and liver of red factor canaries, strongly implicating CYP2J19 as the ketolase that mediates red coloration in birds. Interestingly, a second introgressed region required for red feathers resides within the epidermal differentiation complex, a cluster of genes involved in development of the integument. Lastly, we present evidence that CYP2J19 is involved in ketocarotenoid formation in the retina. The discovery of the carotenoid ketolase has important implications for understanding sensory function and signaling mediated by carotenoid pigmentation.
Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.
Summary Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this perceptual switch remains unknown. Here, we show that a cytochrome P450 family member, Cyp27c1, mediates this switch by converting vitamin A1 (the precursor of 11-cis retinal) into vitamin A2 (the precursor of 11-cis 3,4-didehydroretinal). Knockout of cyp27c1 in zebrafish abrogates production of vitamin A2, eliminating the animal's ability to red-shift its photoreceptor spectral sensitivity, and reducing its ability to see and respond to near-infrared light. Thus, the expression of a single enzyme mediates dynamic spectral tuning of the entire visual system by controlling the balance of vitamin A1 and A2 in the eye.
Yellow, orange, and red coloration is a fundamental aspect of avian diversity and serves as an important signal in mate choice and aggressive interactions. This coloration is often produced through the deposition of diet-derived carotenoid pigments, yet the mechanisms of carotenoid uptake and transport are not wellunderstood. The white recessive breed of the common canary (Serinus canaria), which carries an autosomal recessive mutation that renders its plumage pure white, provides a unique opportunity to investigate mechanisms of carotenoid coloration. We carried out detailed genomic and biochemical analyses comparing the white recessive with yellow and red breeds of canaries. Biochemical analysis revealed that carotenoids are absent or at very low concentrations in feathers and several tissues of white recessive canaries, consistent with a genetic defect in carotenoid uptake. Using a combination of genetic mapping approaches, we show that the white recessive allele is due to a splice donor site mutation in the scavenger receptor B1 (SCARB1; also known as SR-B1) gene. This mutation results in abnormal splicing, with the most abundant transcript lacking exon 4. Through functional assays, we further demonstrate that wild-type SCARB1 promotes cellular uptake of carotenoids but that this function is lost in the predominant mutant isoform in white recessive canaries. Our results indicate that SCARB1 is an essential mediator of the expression of carotenoid-based coloration in birds, and suggest a potential link between visual displays and lipid metabolism.coloration | carotenoids | lipid metabolism | Serinus canaria T he yellow, orange, and red coloration of the feathers, skin, and beaks of birds is most commonly produced through the deposition of carotenoid pigments (1). Carotenoid coloration of birds has been a focus of study in the fields of behavior, evolution, and physiology because it plays a key role in mate assessment in many species. In addition, it is frequently an indicator of individual quality, and can signal species identity (2-4). Birds cannot synthesize carotenoids de novo and must acquire them through their diet (1), potentially linking coloration to the acquisition of pigments from the environment (3). Thus, key hypotheses related to honest signaling and sexual selection have been shaped by and are currently being tested in carotenoidornament systems (5, 6). Ultimately, the information content and evolutionary trajectories of carotenoid ornaments are a function of the physiological mechanisms underlying color expression, yet our understanding of these mechanisms is limited.The expression of carotenoid coloration in birds involves four distinct physiological steps: uptake in the gut, transport in circulatory and lymphatic systems, metabolism either at the site of deposition or in the liver, and deposition in the integument (7). Recent progress has been made in understanding how carotenoids are metabolized to novel forms. In 2016, two studies independently identified a key carotenoid metabolism enzyme,...
The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy-and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.