Neointimal hyperplasia is amongst the major causes of failure of bypass grafts. The disease progression varies from patient to patient due to a range of different factors. In this paper, a mathematical model will be used to understand neointimal hyperplasia in individual patients, combining information from biological experiments and patient-specific data to analyze some aspects of the disease, particularly with regard to mechanical stimuli due to shear stresses on the vessel wall. By combining a biochemical model of cell growth and a patient-specific computational fluid dynamics analysis of blood flow in the lumen, remodeling of the blood vessel is studied by means of a novel computational framework. The framework was used to analyze two vein graft bypasses from one patient: a femoro-popliteal and a femoro-distal bypass. The remodeling of the vessel wall and analysis of the flow for each case was then compared to clinical data and discussed as a potential tool for a better understanding of the disease. Simulation results from this first computational approach showed an overall agreement on the locations of hyperplasia in these patients and demonstrated the potential of using new integrative modeling tools to understand disease progression.
We demonstrate the feasibility of measuring the particle size distribution (PSD) of internal cell structures in vitro. We use polarized light spectroscopy to probe the internal morphology of mammalian breast cancer (MCF7) and cervical cancer (Siha) cells. We find that graphing the least-squared error versus the scatterer size provides insight into cell scattering. A nonlinear optimization scheme is used to determine the PSD iteratively. The results suggest that 2-microm particles (possibly the mitochondria) contribute most to the scattering. Other subcellular structures, such as the nucleoli and the nucleus, may also contribute significantly. We reconstruct the PSD of the mitochondria, as verified by optical microscopy. We also demonstrate the angle dependence of the PSD.
Continuous-wave measurement-based methods offer a rapid cost-effective way to determine optical properties in turbid media. This method requires a measure of the refractive index of the medium, which is often unknown a priori. Whereas previous studies have reported that the refractive index has little impact on the measurement of optical properties, here we show a significant effect of refractive indices on measurements, using both simulations and experiments. In addition we propose a noniterative method to determine the refractive index of the medium. This method can also provide an optimal initial guess of the optical properties for the standard iterative method for determining optical properties in turbid media. Our method is confirmed by simulations and experiments with latex spheres and Intralipid suspensions.
IntroductionArteriovenous fistulas (AVFs) are considered the best and safest modality for providing haemodialysis in patients with end-stage renal disease. Only 20% of UK centres achieve the recommended 80% target for achieving dialysis of the prevalent dialysis population via permanent access (as opposed to a central venous catheter). This is partly due to the relatively poor maturation rate of newly created fistulas, with as many as 50% of fistulas failing to mature.The Surveillance Of arterioveNous fistulAe using ultRasound study will examine whether a protocolised programme of Doppler ultrasound (US) surveillance can identify, early after creation, potentially correctable problems in those AVFs that subsequently fail to mature.Methods and analysisThis is a multicentre observational study that will assess newly created AVFs by Doppler US performed at 2, 4, 6 and 10 weeks after creation. The primary outcome measure will be primary fistula patency at week 10. Secondary outcome measures include: successful use of the fistula; clinical suitability for dialysis; creation of new fistula or radiological salvage; fistula thrombosis; secondary fistula patency rate and patient acceptability.Ethics and disseminationThe study has been approved by the Cambridgeshire and Hertfordshire Research Ethics Committee and by the Health Research Authority (REC 18/EE/0234). The results generated from this work will be published as open access, within 3 years of trial commencement. We will also present our findings at key national/international renal meetings, as well as support volunteers at renal patient groups to disseminate the trial outcome.Trial registration numberISRCTN36033877
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.