The aim of this article is to assess the influence of the tyre/road contact interface on driveline vibrations. The mode shapes of a vehicle driveline are obtained and analysed, initially using three tyre models: a simple torsional spring, linear slip, and relaxation length-based models. Additionally, a fully transient load-and slip-dependent non-linear relaxation length model is incorporated into the driveline to determine the dynamic response on different surfaces. Simulations of pull-away manoeuvres on various surfaces are carried out. The halfshaft torque in each case is analysed and conclusions drawn on the effect of tyre dynamics on the frequency and intensity of driveline vibrations. In order to investigate the influence of higher-frequency tyre dynamics, a model incorporating tyre belt inertia is simulated for the same cases. It is found that the higher-order dynamics introduced by the tyre belt result in additional frequencies in the response, as well as differences in response amplitude. Using the non-linear relaxation length and belt inertia models it is observed that low-µ surfaces promote driveline vibrations at higher and more numerous frequencies compared with the typical shuffle response observed on a high-µ surface. It is shown that this frequency migration can be physically explained by considering the effect of decoupling between driveline and vehicle on low-µ surfaces. It is also shown that the observed frequencies can be predicted by appropriately modified linear models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.