Mutations that disrupt the inwardly rectifying potassium channel Kir2.1 lead to Andersen-Tawil syndrome that includes periodic paralysis, cardiac arrhythmia, cognitive deficits, craniofacial dysmorphologies and limb defects. The molecular mechanism that underlies the developmental consequences of inhibition of these channels has remained a mystery. We show that while loss of Kir2.1 function does not affect expression of several early facial patterning genes, the domain in which Pou3f3 is expressed in the maxillary arch is reduced. Pou3f3 is important for development of the jugal and squamosal bones. The reduced expression domain of Pou3f3 is consistent with the reduction in the size of the squamosal and jugal bones in Kcnj2 animals, however it does not account for the diverse craniofacial defects observed in Kcnj2 animals. We show that Kir2.1 function is required in the cranial neural crest for morphogenesis of several craniofacial structures including palate closure. We find that while the palatal shelves of Kir2.1-null embryos elevate properly, they are reduced in size due to decreased proliferation of the palatal mesenchyme. While we find no reduction in expression of BMP ligands, receptors, and associated Smads in this setting, loss of Kir2.1 reduces the efficacy of BMP signaling as shown by the reduction of phosphorylated Smad 1/5/8 and reduced expression of BMP targets Smad6 and Satb2.
During morphogenesis, cells communicate with each other to shape tissues and organs. Several lines of recent evidence indicate that ion channels play a key role in cellular signaling and tissue morphogenesis. However, little is known about the scope of specific ion-channel types that impinge upon developmental pathways. The Drosophila melanogaster wing is an excellent model in which to address this problem as wing vein patterning is acutely sensitive to changes in developmental pathways. We conducted a screen of 180 ion channels expressed in the wing using loss-of-function mutant and RNAi lines. Here we identify 44 candidates that significantly impacted development of the Drosophila melanogaster wing. Calcium, sodium, potassium, chloride, and ligand-gated cation channels were all identified in our screen, suggesting that a wide variety of ion channel types are important for development. Ion channels belonging to the pickpocket family, the ionotropic receptor family, and the bestrophin family were highly represented among the candidates of our screen. Seven new ion channels with human orthologs that have been implicated in human channelopathies were also identified. Many of the human orthologs of the channels identified in our screen are targets of common general anesthetics, anti-seizure and anti-hypertension drugs, as well as alcohol and nicotine. Our results confirm the importance of ion channels in morphogenesis and identify a number of ion channels that will provide the basis for future studies to understand the role of ion channels in development.
33The diversity of complex microbial communities can be rapidly assessed by high- defining OTUs depended on the method used for OTU picking. Our "default" analysis in QIIME 45 overestimated mock community OTU diversity by at least a factor of ten. Our optimized analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.