Hypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release. We investigated whether PI3K signaling regulates hypothalamic kisspeptin expression, pubertal development, and adult fertility in mice. We generated mice with a kisspeptin cell-specific deletion of the PI3K catalytic subunits p110α and p110β (kiss-p110α/β-KO). Using in situ hybridization, we examined Kiss1 mRNA expression in gonad-intact, gonadectomized (Gdx), and Gdx + steroid-replaced mice. Kiss1 cell number in the anteroventral periventricular hypothalamus (AVPV) was significantly reduced in intact females but not in males. In contrast, compared with WT and regardless of steroid hormone status, Kiss1 cell number was lower in the arcuate (ARC) of kiss-p110α/β-KO males, but it was unaffected in females. Both intact Kiss-p110α/β-KO males and females had reduced ARC kisspeptin-immunoreactive (IR) fibers compared with WT animals. Adult kiss-p110α/β-KO males had significantly lower circulating luteinizing hormone (LH) levels, whereas pubertal development and fertility were unaffected in males. Kiss-p110α/β-KO females exhibited a reduction in fertility despite normal pubertal development, LH levels, and estrous cyclicity. Our data show that PI3K signaling is important for the regulation of hypothalamic kisspeptin expression and contributes to normal fertility in females.
Mammals adapt to seasons using a neuroendocrine calendar defined by the photoperiodic change in the nighttime melatonin production. Under short photoperiod, melatonin inhibits the pars tuberalis production of TSHβ, which, in turn, acts on tanycytes to regulate the deiodinase 2/3 balance resulting in a finely tuned seasonal control of the intra‐hypothalamic thyroid hormone T3. Despite the pivotal role of this T3 signaling for synchronizing reproduction with the seasons, T3 cellular targets remain unknown. One candidate is a population of hypothalamic neurons expressing Rfrp, the gene encoding the RFRP‐3 peptide, thought to be integral for modulating rodent's seasonal reproduction. Here we show that nighttime melatonin supplementation in the drinking water of melatonin‐deficient C57BL/6J mice mimics photoperiodic variations in the expression of the genes Tshb, Dio2, Dio3, and Rfrp, as observed in melatonin‐proficient mammals. Notably, we report that this melatonin regulation of Rfrp expression is no longer observed in mice carrying a global mutation of the T3 receptor, TRα, but is conserved in mice with a selective neuronal mutation of TRα. In line with this observation, we find that TRα is widely expressed in the tanycytes. Altogether, our data demonstrate that the melatonin‐driven T3 signal regulates RFRP‐3 neurons through non‐neuronal, possibly tanycytic, TRα.
MSM/Ms (MSM) is a mouse strain derived from Japanese wild mice, Mus musculus molossinus, that maintains the ability to synthesize melatonin in patterns reflecting the ambient photoperiod. The objective of this study was to characterize the effects of photoperiodic variation on metabolic and reproductive traits, and the related changes in pituitaryhypothalamic gene expression in MSM mice. MSM mice were kept in long (LP) or short photoperiod (SP) for 6 weeks. Our results demonstrate that MSM mice kept in LP, as compared with mice kept in SP, display higher expression of genes encoding thyrotropin (TSH) in the pars tuberalis, thyroid hormone deiodinase 2 (dio2) in the tanycytes and RFamide-related peptide (RFRP3) in the hypothalamus, and lower expression of dio3 in the tanycytes, along with larger body and reproductive organ mass. Additionally, to assess the effects of the gestational photoperiodic environment on the expression of these genes, we kept MSM mice in LP or SP from gestation and studied their offspring. We show that the gestational photoperiod affects the TSH/dio pathway in newborn MSM mice in a similar way to adults. This result indicates a transgenerational effect of photoperiod from the mother to the fetus in utero. Overall, these results indicate that photoperiod can influence neuroendocrine regulation in a melatonin-proficient mouse strain, in a manner similar to that documented in other seasonal rodent species. MSM mice may therefore become a useful model for research into the molecular basis of photoperiodic regulation of seasonal biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.