Liquid silicone rubber (LSR) is an elastomer molded into critical performance components for applications in medical, power, consumer, automotive, and aerospace applications. This article reviews process behavior, material modeling, and simulation of the (LSR) injection molding process. Each phase of the LSR injection molding process is discussed, including resin handling, plastication, injection, pack and hold, and curing; and factors affecting the molding process are reviewed. Processing behavior of LSR is marked by transient interactions between curing, shear rate, temperature, pressure, and tooling. Therefore, current LSR models for curing, viscosity, pressure, and temperature are discussed. Process dynamics and material modeling are combined in LSR injection molding simulations with applications in mold design, troubleshooting process‐induced defects, and management of shear stress and non‐uniform temperatures between LSR and substrates during overmolding. Finally, case studies using commercial simulation software are presented, which have shown cavity pressure and flow front advancement within 3% of experimental values. Optimization of LSR materials, data collection, model fitting, venting, and bonding remain areas of continued interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.