Abstract-The considerable previous work characterizing visualization usage has focused on low-level tasks or interactions and highlevel tasks, leaving a gap between them that is not addressed. This gap leads to a lack of distinction between the ends and means of a task, limiting the potential for rigorous analysis. We contribute a multi-level typology of visualization tasks to address this gap, distinguishing why and how a visualization task is performed, as well as what the task inputs and outputs are. Our typology allows complex tasks to be expressed as sequences of interdependent simpler tasks, resulting in concise and flexible descriptions for tasks of varying complexity and scope. It provides abstract rather than domain-specific descriptions of tasks, so that useful comparisons can be made between visualization systems targeted at different application domains. This descriptive power supports a level of analysis required for the generation of new designs, by guiding the translation of domain-specific problems into abstract tasks, and for the qualitative evaluation of visualization usage. We demonstrate the benefits of our approach in a detailed case study, comparing task descriptions from our typology to those derived from related work. We also discuss the similarities and differences between our typology and over two dozen extant classification systems and theoretical frameworks from the literatures of visualization, humancomputer interaction, information retrieval, communications, and cartography.
There are many ways to visualize event sequences as timelines. In a storytelling context where the intent is to convey multiple narrative points, a richer set of timeline designs may be more appropriate than the narrow range that has been used for exploratory data analysis by the research community. Informed by a survey of 263 timelines, we present a design space for storytelling with timelines that balances expressiveness and effectiveness, identifying 14 design choices characterized by three dimensions: representation, scale, and layout. Twenty combinations of these choices are viable timeline designs that can be matched to different narrative points, while smooth animated transitions between narrative points allow for the presentation of a cohesive story, an important aspect of both interactive storytelling and data videos. We further validate this design space by realizing the full set of viable timeline designs and transitions in a proof-of-concept sandbox implementation that we used to produce seven example timeline stories. Ultimately, this work is intended to inform and inspire the design of future tools for storytelling with timelines.
We present Charticulator, an interactive authoring tool that enables the creation of bespoke and reusable chart layouts. Charticulator is our response to most existing chart construction interfaces that require authors to choose from predefined chart layouts, thereby precluding the construction of novel charts. In contrast, Charticulator transforms a chart specification into mathematical layout constraints and automatically computes a set of layout attributes using a constraint-solving algorithm to realize the chart. It allows for the articulation of compound marks or glyphs as well as links between these glyphs, all without requiring any coding or knowledge of constraint satisfaction. Furthermore, thanks to the constraint-based layout approach, Charticulator can export chart designs into reusable templates that can be imported into other visualization tools. In addition to describing Charticulator's conceptual framework and design, we present three forms of evaluation: a gallery to illustrate its expressiveness, a user study to verify its usability, and a click-count comparison between Charticulator and three existing tools. Finally, we discuss the limitations and potentials of Charticulator as well as directions for future research. Charticulator is available with its source code at https://charticulator.com.
For an investigative journalist, a large collection of documents obtained from a Freedom of Information Act request or a leak is both a blessing and a curse: such material may contain multiple newsworthy stories, but it can be difficult and time consuming to find relevant documents. Standard text search is useful, but even if the search target is known it may not be possible to formulate an effective query. In addition, summarization is an important non-search task. We present Overview, an application for the systematic analysis of large document collections based on document clustering, visualization, and tagging. This work contributes to the small set of design studies which evaluate a visualization system "in the wild", and we report on six case studies where Overview was voluntarily used by self-initiated journalists to produce published stories. We find that the frequently-used language of "exploring" a document collection is both too vague and too narrow to capture how journalists actually used our application. Our iterative process, including multiple rounds of deployment and observations of real world usage, led to a much more specific characterization of tasks. We analyze and justify the visual encoding and interaction techniques used in Overview's design with respect to our final task abstractions, and propose generalizable lessons for visualization design methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.