The Bcl-2 oncoprotein is a key regulator of apoptosis and the Bag-1 protein interacts with Bcl-2 and cooperates with Bcl-2 to suppress apoptosis. The human Bag-1 cDNA is essentially identical with a previously described cDNA encoding RAP46, which interacts with activated steroid hormone receptors. However, there is considerable confusion over the structure of Bag-1/RAP46 proteins and their relationship to endogenous Bag-1 proteins. Here we have characterized Bag-1 expression in mammalian cells. We demonstrate that, in addition to the previously identified 32 kDa murine and 36 kDa human Bag-1 proteins, cells express a second 50 kDa Bag-1 isoform. In some murine cell lines p50 is expressed at the same level as p32 Bag-1, and p50 and p32 Bag-1 proteins have distinct subcellular localizations, suggesting that they are functionally distinct. The published mouse Bag-1 cDNA is partial, and sequencing of additional murine Bag-1 RNA 5' sequences demonstrated that human and murine Bag-1 cDNAs contain longer open reading frames than originally suspected. We determined which open reading frames gave rise to the Bag-1 isoforms in human cells. Surprisingly, translation of neither protein initiated at the first in-frame methionine, and cells do not express Bag-1/RAP46 proteins with the previously proposed structures; p50 Bag-1 initiates at an upstream CUG codon, whereas p36 Bag-1 initiates at a downstream AUG codon. Therefore, cells express two differently localized Bag-1 isoforms generated by alternative translation initiation, and Bag-1 proteins may play a dual role in regulating apoptosis and steroid hormone-dependent transcription.
Enforced expression of the antiapoptotic Bcl-2 family protein Mcl-1 promotes lymphomagenesis in the mouse; however, the functional role of Mcl-1 in human B-cell lymphoma remains unclear. We demonstrate that Mcl-1 is widely expressed in malignant B-cells, and high-level expression of Mcl-1 is required for B-lymphoma cell survival, since transfection of Mcl-1-specific antisense oligodeoxynucleotides was sufficient to promote apoptosis in Akata6 lymphoma cells. Mcl-1 was efficiently cleaved by caspases at evolutionarily conserved aspartic acid residues in vitro, and during cisplatin-induced apoptosis in B-lymphoma cell lines and spontaneous apoptosis of primary malignant B-cells. Overexpression of the Mcl-1 cleavage product that accumulated during apoptosis was sufficient to kill cells. Therefore, Mcl-1 is an essential survival molecule for B-lymphoma cells and is cleaved by caspases to a death-promoting molecule during apoptosis. In contrast to Mcl-1, Bcl-2 and Bcl-X L were relatively resistant to caspase cleavage in vitro and in intact cells. Interfering with Mcl-1 function appears to be an effective means of inducing apoptosis in Mcl-1-positive B-cell lymphoma, and the unique sensitivity of Mcl-1 to caspasemediated cleavage suggests an attractive strategy for converting it to a proapoptotic molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.