Neurite outgrowth is influenced by positive and negative signals that include the semaphorins, an important family of axonal outgrowth inhibitors. Here we report that the Rac GTPase activating protein (GAP) ␣2-chimaerin is involved in Semaphorin 3A (Sema 3A) signaling. In dorsal root ganglion neurons, Sema 3A-induced growth cone collapse was inhibited by ␣2-chimaerin mutated to eliminate GAP activity or interaction with phosphotyrosine. Activation of ␣2-chimaerin by phorbol ester caused growth cone collapse. Active ␣2-chimaerin interacts with collapsin response mediator protein-2 (CRMP-2) and cyclin-dependent kinase (Cdk) 5/p35 kinase through its SH2 and GAP domains, respectively. Cdk5 phosphorylates CRMP-2 at serine 522, possibly facilitating phosphorylation of serine 518 and threonine 514 by glycogen synthase kinase 3 (GSK3), a kinase previously implicated in Sema 3A signaling. Phosphorylation of CRMP-2 serine 522 was essential for Sema 3A-induced growth cone collapse, which is dependent on Cdk5 but not Rho kinase activity. ␣2-chimaerin, like CRMP-2, can associate with the Sema 3A receptor. These results indicate that active ␣2-chimaerin Rac GAP, Cdk5/p35, and its substrate CRMP-2, are implicated in the dynamics of growth cone guidance initiated through Sema 3A signaling.
Sleep is under homeostatic control, whereby increasing wakefulness generates sleep need and triggers sleep drive. However, the molecular and cellular pathways by which sleep need is encoded are poorly understood. In addition, the mechanisms underlying both how and when sleep need is transformed to sleep drive are unknown. Here, using ex vivo and in vivo imaging, we show in Drosophila that astroglial Ca 2+ signaling increases with sleep need. We demonstrate that this signaling is dependent on a specific L-type Ca 2+ channel and is required for homeostatic sleep rebound. Thermogenetically increasing Ca 2+ in astrocytes induces persistent sleep behavior, and we exploit this phenotype to conduct a genetic screen for genes required for the homeostatic regulation of sleep. From this large-scale screen, we identify TyrRII, a monoaminergic receptor required in astrocytes for sleep homeostasis. TyrRII levels rise following sleep deprivation in a Ca 2+ -dependent manner, promoting further increases in astrocytic Ca 2+ and resulting in a positive-feedback loop. These data suggest that TyrRII acts as a gate to enable the transformation of sleep need to sleep drive at the appropriate time. Moreover, our findings suggest that astrocytes then transmit this sleep need to the R5 sleep drive circuit, by upregulation and release of the interleukin-1 analog Spätzle. These findings define astroglial Ca 2+ signaling mechanisms encoding sleep need and reveal dynamic properties of the sleep homeostatic control system.
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors, although to date direct evidence to support this hypothesis is lacking. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next used novel multiple feature selection tools in Fmr1 KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are uniquely enriched in parvocellular oxytocin neurons. Taken together these results provide the first evidence that oxytocin pathway specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.