The Skyrme effective interaction, with its multitude of parameterisations, along with its implementation using the static and time-dependent density functional (TDHF) formalism have allowed for a range of microscopic calculations of low-energy heavy-ion collisions. These calculations allow variation of the effective interaction along with an interpretation of the results of this variation informed by a comparison to experimental data. Initial progress in implementing TDHF for heavy-ion collisions necessarily used many approximations in the geometry or the interaction. Over the last decade or so, the implementations have overcome all restrictions, and studies have begun to be made where details of the effective interaction are being probed. This review surveys these studies in low energy heavy-ion reactions, finding significant effects on observables from the form of the spin-orbit interaction, the use of the tensor force, and the inclusion of time-odd terms in the density functional.Heavy-ion collisions combine the rich dynamics of a many-body out-of-equilibrium open quantum system with the complexities of the residual part of the strong interaction which leaks out of the small, but neither fundamental or point-like, nucleons, causing them to stick loosely together some of the time, and to fall apart at others. Understanding heavy-ion reactions across all energy scales is necessary to understand stellar nucleosynthesis [1], the synthesis of superheavy nuclei [2,3], the properties of nuclear matter [4][5][6], the QCD phase diagram [7,8] as well as the understanding of reaction mechanisms themselves [9][10][11][12][13].Among the theoretical techniques used to study heavy-ion reactions, methods based on timedependent Hartree-Fock have recently achieved the status of having sufficiently mature implementations free of limiting approximations, and running at a suitable speed, such that systematically varying the effective interaction in the calculations is possible. It is such studies that form the main subject of the present review. The practical implementations, using the Skyrme interaction, are in some sense parameter-free, in that one has a framework using an effective interaction fitted to ground state data and nuclear matter properties, with no further adjustment to dynamics. Structure and reaction effects are together determined self-consistently from the interaction, subject to the approximations of the mean-field and one gives no further adjustment. In another sense, the variation among the sets of available effective interactions are parameters of the calculations. We attempt to summarise here what has been learnt from exploring different Skyrme force parameterisations within low-energy heavy-ion reaction calculations.Overlapping this subject area are other recent review articles, to which the reader is referred: A review in which extensive coverage of theoretical approaches to dynamics of heavy-ion collisions in TDHF and its extensions is presented by Simenel and Umar [14]. This review extensively covers the...
Background: It is generally acknowledged that the time-dependent Hartree-Fock (TDHF) method provides a useful foundation for a fully microscopic many-body theory of low-energy heavy-ion reactions. The TDHF method is also known in nuclear physics in the small amplitude domain, where it provides a useful description of collective states, and is based on the mean-field formalism which has been a relatively successful approximation to the nuclear many-body problem. Currently, the TDHF theory is being widely used in the study of fusion excitation functions, fission, deep-inelastic scattering of heavy mass systems, while providing a natural foundation for many other studies.Purpose: With the advancement of computational power it is now possible to undertake TDHF calculations without any symmetry assumptions and incorporate the major strides made by the nuclear structure community in improving the energy density functionals used in these calculations. In particular, time-odd and tensor terms in these functionals are naturally present during the dynamical evolution, while being absent or minimally important for most static calculations. The parameters of these terms are determined by the requirement of Galilean invariance or local gauge invariance but their significance for the reaction dynamics have not been fully studied. This work addresses this question with emphasis on the tensor force. Method:The full version of the Skyrme force, including terms arising only from the Skyrme tensor force, is applied to the study of collisions within a completely symmetry-unrestricted TDHF implementation. Results:We examine the effect on upper fusion thresholds with and without the tensor force terms and find an effect on the fusion threshold energy of the order several MeV. Details of the distribution of the energy within terms in the energy density functional is also discussed.Conclusions: Terms in the energy density functional linked to the tensor force can play a non-negligible role in dynamic processes in nuclei.
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.
The function of long calling is a subject of interest across animal behaviour study, particularly within primatology. Many primate species have male‐specific long‐distance calls, including platyrrhines like the folivorous howler monkey (Alouatta spp.). Howler monkeys may howl to defend resources such as feeding trees or areas of rich vegetation from other monkey groups. This study tests the ecological resource defence hypothesis for howling behaviour in the mantled howler monkey (Alouatta palliata) and investigates how anthropogenic forest fragmentation may influence howling behaviour. More specifically, this study examines how howling bout rate, duration, precursors and tree species richness, DBH, and canopy cover vary in 100 m anthropogenic edge and interior forest zones at La Suerte Biological Research Station (LSBRS), a fragmented tropical rainforest in Costa Rica. Results show that tree species richness and canopy cover are higher in forest interior at this site, suggesting that monkeys should howl at greater rates in the interior to defend access to these higher‐quality vegetation resources. Overall, our results supported the ecological resource defence hypothesis. The main howl precursor was howling from neighbouring groups. Although howling rate did not differ between forest zones, howling bouts from forest interior were longer, had a greater number of howls per bout and were preceded by different precursors than howls from anthropogenic edge zones, including more howls from neighbouring groups. Our findings provide some of the first evidence for behavioural edge effects in primate vocal communication behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.