Multireference configuration interaction (MRCI) calculations of the lowest singlet X(1A') and triplet ã((3)A'') states as well as the first excited singlet Ã((1)A'') state have been performed for a series of bromocarbenes: CHBr, CFBr, CClBr, CBr(2), and CIBr. The MRCI calculations were performed with correlation consistent basis sets of valence triple-ζ plus polarization quality, employing a full-valence active space of 18 electrons in 12 orbitals (12 and 9, respectively, for CHBr). Results obtained include equilibrium geometries and harmonic vibrational frequencies for each of the electronic states, along with ã((3)A'') ← X((1)A') singlet-triplet gaps and Ã((1)A'') ← X((1)A') transition energies. Comparisons have been made with previous computational and experimental results where available. The MRCI calculations presented in this work provide a comprehensive series of results at a consistent high level of theory for all of the bromocarbenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.