Many of the healthcare consequences of cigarette smoking could be due to its ability to compromise the immune system, and in respiratory diseases like chronic obstructive pulmonary disease (COPD), a constant low level of infection could be responsible for some of the symptoms/pathology. The aim was to assess the impact of cigarette smoke (CS) on the release of innate effector cytokines in THP-1 cells and human lung macrophages, and to determine the molecular mechanism behind the altered response. Cells were exposed to CS with and without endotoxin stimulus, cytokines, glutathione, mitogen-activated protein kinase (MAPK) phosphorylation, IkappaB kinase-2 (IKK-2) activity, nuclear factor kappa B (NF-kappaB), and activator protein-1 (AP-1) pathway activation was measured. Attempts were made to mimic or block the effect of CS by using nicotine, nitric oxide donors/inhibitors, prostanoid inhibitors, and anti-oxidants. Results showed that CS initially delayed the production of "innate" cytokines (e.g., IL-1beta and IL-6) and reduced glutathione levels. This was associated with a reduction in NF-kappaB pathway activation, which suggested a causative link. CS also increased the phosphorylation of MAPK's and the production of IL-8 but interestingly only in stimulated cells. Exogenous glutathione treatment reversed both these effects of CS, which suggests that this molecule may play a central role. In conclusion, this data provides a novel mechanistic explanation for why smokers have increased prevalence/severity of respiratory infections. In addition, the suppression of the innate response is accompanied by an increase in the neutrophil chemoattractant, IL-8, which may suggest a link to the pathogenesis of smoking-related inflammatory disease.
This study demonstrates that inhibiting IKK-2 results in a general reduction of the inflammatory response in vitro and in vivo. Compounds of this class could have therapeutic utility in the treatment of asthma and may, in certain respects, possess a beneficial efficacy profile compared with that of a steroid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.