Signals of local adaptation have been found in many plants and animals, highlighting the heterogeneity in the distribution of adaptive genetic variation throughout species ranges. In the coming decades, global climate change is expected to induce shifts in the selective pressures that shape this adaptive variation. These changes in selective pressures will likely result in varying degrees of local climate maladaptation and spatial reshuffling of the underlying distributions of adaptive alleles. There is a growing interest in using population genomic data to help predict future disruptions to locally adaptive gene-environment associations. One motivation behind such work is to better understand how the effects of changing climate on populations’ short-term fitness could vary spatially across species ranges. Here we review the current use of genomic data to predict the disruption of local adaptation across current and future climates. After assessing goals and motivations underlying the approach, we review the main steps and associated statistical methods currently in use and explore our current understanding of the limits and future potential of using genomics to predict climate change (mal)adaptation. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 51 is November 2, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Statistical Association.
Monitoring programs increasingly are used to document the spread of invasive species in the hope of detecting and eradicating low‐density infestations before they become established. However, interobserver variation in the detection and correct identification of low‐density populations of invasive species remains largely unexplored. In this study, we compare the abilities of volunteer and experienced individuals to detect low‐density populations of an actively spreading invasive species, and we explore how interobserver variation can bias estimates of the proportion of sites infested derived from occupancy models that allow for both false negative and false positive (misclassification) errors. We found that experienced individuals detected small infestations at sites where volunteers failed to find infestations. However, occupancy models erroneously suggested that experienced observers had a higher probability of falsely detecting the species as present than did volunteers. This unexpected finding is an artifact of the modeling framework and results from a failure of volunteers to detect low‐density infestations rather than from false positive errors by experienced observers. Our findings reveal a potential issue with site occupancy models that can arise when volunteer and experienced observers are used together in surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.