Seagrasses have received considerable attention over the past 2 decades because of the multiple ecological roles they play in estuarine and coastal ecosystems and concerns over worldwide losses of seagrass habitat due to direct and indirect human impacts. Restoration and conservation efforts are underway in some areas of the world, but progress may be limited by the paucity of information on the role of seeds in bed dynamics. Although flowering occurs in most of the 58 seagrass species, seed germination data exist for only 19 of the 42 species that have some period of dormancy, with only 93 published references to field and/or laboratory studies. This review addresses critical issues in conservation and restoration of seagrasses involving seed dormancy (e.g. environmental vs physiological), existence and type of seed bank (transient or persistent), and factors influencing seed germination (e.g. salinity, temperature, light). Results of many earlier published studies relating seed germination to various environmental factors may need re-examination given more recent published data which show a confounding influence of oxygen level on the germination process. We highlight the importance of conducting ecologically meaningful germination studies, including germination experiments conducted in sediments. We also identify questions for future research that may figure prominently in landscape level questions regarding protected marine or estuarine reserves, habitat fragmentation, and restoration.
Plant populations have long been noted to migrate faster than predicted based on their life history and seed dispersal characteristics (i.e., Reid's paradox of rapid plant migration). Although precise mechanisms to account for such phenomena are not fully known for all plant species, a combination of theoretical and empirically driven mechanisms often resolves this paradox. Here, we couple a series of direct and indirect field and laboratory exercises on one marine macrophyte, Zostera marina L. (eelgrass), to measured distances between new patches and established beds in order to elucidate the long‐distance dispersal and colonization potential of this marine seagrass. Detached, floating reproductive shoots with mature seeds were found to remain positively buoyant for up to 2 wk and retain mature seeds for up to 3 wk before release under laboratory conditions. Analysis of the detritus wrack along a remote shoreline found reproductive fragments with viable seeds up to 34 km from established, natural beds. Analysis of different regions of the Chesapeake Bay and coastal bays of the Delmarva Peninsula that once supported eelgrass populations, revealed natural patches at 13 sites ranging from 1 to 108 km from established populations. A combination of tidal currents and wind influences has the potential to move a passive particle at the surface (e.g., a floating reproductive fragment) up to 23 km in a 6‐h tidal window suggesting that most unvegetated areas in this region that can support eelgrass are within the colonization potential envelope. We suggest that, when combined with earlier work on seed dispersal ecology of this species, eelgrass has strong qualities for high colonization potential of new habitat. The finding of natural patches at such great distances from established beds when studied in the context of the dispersal mechanism (currents and wind) make the dispersal distances of this species one of the highest for angiosperms, comparable in scale to mangroves and coconuts. This new understanding of the dispersal dynamics of eelgrass is critical in the context of seagrass restoration in areas distant from established beds, maintenance of existing populations threatened by anthropogenic inputs of sediments and nutrients, and examining metapopulation concepts in seagrass ecology.
Plant populations have long been noted to migrate faster than predicted based on their life history and seed dispersal characteristics (i.e., Reid's paradox of rapid plant migration). Although precise mechanisms to account for such phenomena are not fully known for all plant species, a combination of theoretical and empirically driven mechanisms often resolves this paradox. Here, we couple a series of direct and indirect field and laboratory exercises on one marine macrophyte, Zostera marina L. (eelgrass), to measured distances between new patches and established beds in order to elucidate the long-distance dispersal and colonization potential of this marine seagrass.Detached, floating reproductive shoots with mature seeds were found to remain positively buoyant for up to 2 wk and retain mature seeds for up to 3 wk before release under laboratory conditions. Analysis of the detritus wrack along a remote shoreline found reproductive fragments with viable seeds up to 34 km from established, natural beds. Analysis of different regions of the Chesapeake Bay and coastal bays of the Delmarva Peninsula that once supported eelgrass populations, revealed natural patches at 13 sites ranging from 1 to 108 km from established populations. A combination of tidal currents and wind influences has the potential to move a passive particle at the surface (e.g., a floating reproductive fragment) up to 23 km in a 6-h tidal window suggesting that most unvegetated areas in this region that can support eelgrass are within the colonization potential envelope.We suggest that, when combined with earlier work on seed dispersal ecology of this species, eelgrass has strong qualities for high colonization potential of new habitat. The finding of natural patches at such great distances from established beds when studied in the context of the dispersal mechanism (currents and wind) make the dispersal distances of this species one of the highest for angiosperms, comparable in scale to mangroves and coconuts. This new understanding of the dispersal dynamics of eelgrass is critical in the context of seagrass restoration in areas distant from established beds, maintenance of existing populations threatened by anthropogenic inputs of sediments and nutrients, and examining metapopulation concepts in seagrass ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.