We studied whether circulating activated platelets and platelet-leukocyte aggregates cause the development of atherosclerotic lesions in apolipoprotein-E-deficient (Apoe(-/-)) mice. Circulating activated platelets bound to leukocytes, preferentially monocytes, to form platelet-monocyte/leukocyte aggregates. Activated platelets and platelet-leukocyte aggregates interacted with atherosclerotic lesions. The interactions of activated platelets with monocytes and atherosclerotic arteries led to delivery of the platelet-derived chemokines CCL5 (regulated on activation, normal T cell expressed and secreted, RANTES) and CXCL4 (platelet factor 4) to the monocyte surface and endothelium of atherosclerotic arteries. The presence of activated platelets promoted leukocyte binding of vascular cell adhesion molecule-1 (VCAM-1) and increased their adhesiveness to inflamed or atherosclerotic endothelium. Injection of activated wild-type, but not P-selectin-deficient, platelets increased monocyte arrest on the surface of atherosclerotic lesions and the size of atherosclerotic lesions in Apoe(-/-) mice. Our results indicate that circulating activated platelets and platelet-leukocyte/monocyte aggregates promote formation of atherosclerotic lesions. This role of activated platelets in atherosclerosis is attributed to platelet P-selectin-mediated delivery of platelet-derived proinflammatory factors to monocytes/leukocytes and the vessel wall.
BACKGROUND Early studies suggest that coronavirus disease 2019 (COVID-19) is associated with a high incidence of cardiac arrhythmias. Severe acute respiratory syndrome coronavirus 2 infection may cause injury to cardiac myocytes and increase arrhythmia risk.OBJECTIVES The purpose of this study was to evaluate the risk of cardiac arrest and arrhythmias including incident atrial fibrillation (AF), bradyarrhythmias, and nonsustained ventricular tachycardia (NSVT) in a large urban population hospitalized for COVID-19. We also evaluated correlations between the presence of these arrhythmias and mortality.METHODS We reviewed the characteristics of all patients with COVID-19 admitted to our center over a 9-week period. Throughout hospitalization, we evaluated the incidence of cardiac arrests, arrhythmias, and inpatient mortality. We also used logistic regression to evaluate age, sex, race, body mass index, prevalent cardiovascular disease, diabetes, hypertension, chronic kidney disease, and intensive care unit (ICU) status as potential risk factors for each arrhythmia.RESULTS Among 700 patients (mean age 50 6 18 years; 45% men; 71% African American; 11% received ICU care), there were 9 cardiac arrests, 25 incident AF events, 9 clinically significant bradyarrhythmias, and 10 NSVTs. All cardiac arrests occurred in patients admitted to the ICU. In addition, admission to the ICU was associated with incident AF (odds ratio [OR] 4.68; 95% confidence interval [CI] 1.66-13.18) and NSVT (OR 8.92; 95% CI 1.73-46.06) after multivariable adjustment. Also, age and incident AF (OR 1.05; 95% CI 1.02-1.09) and prevalent heart failure and bradyarrhythmias (OR 9.75; 95% CI 1.95-48.65) were independently associated. Only cardiac arrests were associated with acute in-hospital mortality.CONCLUSION Cardiac arrests and arrhythmias are likely the consequence of systemic illness and not solely the direct effects of COVID-19 infection.
The heart consumes circulating nutrients to fuel lifelong contraction, but a comprehensive mapping of human cardiac fuel use is lacking. We used metabolomics on blood from artery, coronary sinus, and femoral vein in 110 patients with or without heart failure to quantify the uptake and release of 277 metabolites, including all major nutrients, by the human heart and leg. The heart primarily consumed fatty acids and, unexpectedly, little glucose; secreted glutamine and other nitrogen-rich amino acids, indicating active protein breakdown, at a rate ~10 times that of the leg; and released intermediates of the tricarboxylic acid cycle, balancing anaplerosis from amino acid breakdown. Both heart and leg consumed ketones, glutamate, and acetate in direct proportionality to circulating levels, indicating that availability is a key driver for consumption of these substrates. The failing heart consumed more ketones and lactate and had higher rates of proteolysis. These data provide a comprehensive and quantitative picture of human cardiac fuel use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.