Bacteria use a diverse arsenal of anti-phage immune systems, including CRISPR-Cas and restriction enzymes. Identifying the full defense repertoire of a given species is still challenging, however. Here, we developed a computational tool to broadly identify anti-phage systems, which was applied to >180,000 genomes available on NCBI, revealingPseudomonas aeruginosato possess the most diverse anti-phage arsenal of any species with >200 sequenced genomes. Using network analysis to identify the common neighbors of anti-phage systems, we surprisingly identified two highly conserved core defense hotspot loci (cDHS1 and cDHS2). Across more than 1,000 P. aeruginosa strains, cDHS1 is up to 224 kb (mean: 34 kb) with varied arrangements of at least 31 immune systems while cDHS2 has 24 distinct systems (mean: 15.4 kb). cDHS1/2 are present in mostP. aeruginosaisolates, in contrast to highly variable mobile DHSs. Most cDHS genes are of unknown function potentially representing new anti-phage systems, which we validated by identifying a novel anti-phage system (Shango) commonly encoded in cDHS1. Identification of core gene markers that flank immune islands could be a simple approach for immune system discovery and may represent popular landing spots for diverse MGEs carrying anti-phage systems.
Bacteria use a diverse arsenal of anti-phage immune systems, including CRISPR-Cas and restriction enzymes. Recent advances in anti-phage system discovery and annotation tools have unearthed many unique systems, often encoded in horizontally transferred defense islands, which can be horizontally transferred. Here, we developed Hidden Markov Models (HMMs) for defense systems and queried microbial genomes on the NCBI database. Out of the 30 species with >200 completely sequenced genomes, our analysis found Pseudomonas aeruginosa exhibits the greatest diversity of anti-phage systems, as measured by Shannon entropy. Using network analysis to identify the common neighbors of anti-phage systems, we identified two core defense hotspot loci (cDHS1 and cDHS2). cDHS1 is up to 224 kb (median: 26 kb) with varied arrangements of more than 30 distinct immune systems across isolates, while cDHS2 has 24 distinct systems (median: 6 kb). Both cDHS regions are occupied in a majority of P. aeruginosa isolates. Most cDHS genes are of unknown function potentially representing new anti-phage systems, which we validated by identifying a novel anti-phage system (Shango) commonly encoded in cDHS1. Identifying core genes flanking immune islands could simplify immune system discovery and may represent popular landing spots for diverse MGEs carrying anti-phage systems.
CRISPR systems are prokaryotic adaptive immune systems that use RNA-guided Cas nucleases to recognize and destroy foreign genetic elements, like bacteriophages and plasmids. To overcome CRISPR immunity, phages have evolved diverse families of anti-CRISPR proteins (Acrs), each of which inhibits the nucleic acid binding or cleavage activities of specific Cas protein families. Recently, Lin et al. (2020) described the discovery and characterization of 7 different Acr families (AcrVIA1-7) that inhibit type VI-A CRISPR systems, which use the nuclease Cas13a to perform RNA-guided RNA cleavage. In this Matters Arising article, we detail several inconsistencies that question the results reported in the Lin et al. (2020) study. These include inaccurate bioinformatics analyses, as well as reported experiments involving bacterial strains that are impossible to construct. The authors were unable to provide their published strains with which we might reproduce their experiments. We independently tested the Acr sequences described in Lin et al. (2020) in two different Cas13 inhibition assays, but could not detect anti-CRISPR activity. Taken together, our data and analyses prompt us to question the claim that AcrVIA1-7 reported in Lin et al. are bona fide type VI anti-CRISPR proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.