Cue-elicited drug-craving is a cardinal feature of addiction that intensifies (incubates) during protracted withdrawal. In a rat model, these addiction-related behavioral pathologies are mediated, respectively, by time-dependent increases in PI3K/Akt1 signaling and reduced Group 1 metabotropic glutamate receptor (mGlu) expression, within the ventromedial prefrontal cortex (vmPFC). Herein, we examined the capacity of single oral dosing with everolimus, an FDA-approved inhibitor of the PI3K/Akt effector mTOR, to reduce incubated cocaine-craving and reverse incubation-associated changes in vmPFC kinase activity and mGlu expression. Rats were trained to lever-press for intravenous infusions of cocaine or delivery of sucrose pellets and then subjected to tests for cue-reinforced responding during early (3 days) or late (30–46 days) withdrawal. Rats were gavage-infused with everolimus (0–1.0 mg/kg), either prior to testing to examine for effects upon reinforcer-seeking behavior, or immediately following testing to probe effects upon the consolidation of extinction learning. Single oral dosing with everolimus dose-dependently blocked cocaine-seeking during late withdrawal and the effect lasted at least 24 h. No everolimus effects were observed for cue-elicited sucrose-seeking or cocaine-seeking in early withdrawal. In addition, everolimus treatment, following initial cue-testing, reduced subsequent cue hyper-responsivity exhibited observed during late withdrawal, arguing a facilitation of extinction memory consolidation. everolimus’ “anti-incubation” effect was associated with a reversal of withdrawal-induced changes in indices of PI3K/Akt1/mTOR activity, as well as Homer protein and mGlu1/5 expression, within the prelimbic (PL) subregion of the prefrontal cortex. Our results indicate mTOR inhibition as a viable strategy for interrupting heightened cocaine-craving and facilitating addiction recovery during protracted withdrawal.
Cue-elicited drug-craving is a cardinal feature of addiction that intensifies (incubates) during protracted withdrawal. In a rat model, these addiction-related behavioral pathologies are mediated, respectively, by time-dependent increases in PI3K/Akt1 signaling and reduced Group 1 metabotropic glutamate receptor (mGlu) expression, within the ventromedial prefrontal cortex (vmPFC). Herein, we examined the capacity of single oral dosing with Everolimus, an FDA-approved inhibitor of the PI3K/Akt effector mTOR, to reduce incubated cocaine-craving and reverse incubation-associated changes in vmPFC kinase activity and mGlu expression. Rats were trained to lever-press for intravenous infusions of cocaine or delivery of sucrose pellets and then subjected to tests for cue-reinforced responding during early (3 days) or late (30-46 days) withdrawal. Rats were gavage-infused with Everolimus (0-1.0 mg/kg), either prior to testing to examine for effects upon reinforcer-seeking behavior, or immediately following testing to probe effects upon the consolidation of extinction learning. Single oral dosing with Everolimus dose-dependently blocked cocaine-seeking during late withdrawal and the effect lasted at least 24 h. No Everolimus effects were observed for cue-elicited sucrose-seeking or cocaine-seeking in early withdrawal. Additionally, Everolimus treatment, following initial cue-testing, reduced subsequent cue hyper-responsivity exhibited observed during late withdrawal, arguing a facilitation of extinction memory consolidation. Everolimus’ “anti-incubation” effect was associated with a reversal of withdrawal-induced changes in indices of PI3K/Akt1/mTOR activity, as well as Homer protein and mGlu1/5 expression, within the prelimbic (PL) subregion of the prefrontal cortex. Our results indicate mTOR inhibition as a viable strategy for interrupting heightened cocaine-craving and facilitating addiction recovery during protracted withdrawal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.