Significance: Matrix metalloproteinases (MMPs) are present in both acute and chronic wounds. They play a pivotal role, with their inhibitors, in regulating extracellular matrix degradation and deposition that is essential for wound reepithelialization. The excess protease activity can lead to a chronic nonhealing wound. The timed expression and activation of MMPs in response to wounding are vital for successful wound healing. MMPs are grouped into eight families and display extensive homology within these families. This homology leads in part to the initial failure of MMP inhibitors in clinical trials and the development of alternative methods for modulating the MMP activity. MMP-knockout mouse models display altered wound healing responses, but these are often subtle phenotypic changes indicating the overlapping MMP substrate specificity and inter-MMP compensation. Recent Advances: Recent research has identified several new MMP modulators, including photodynamic therapy, protease-absorbing dressing, microRNA regulation, signaling molecules, and peptides. Critical Issues: Wound healing requires the controlled activity of MMPs at all stages of the wound healing process. The loss of MMP regulation is a characteristic of chronic wounds and contributes to the failure to heal. Future Directions: Further research into how MMPs are regulated should allow the development of novel treatments for wound healing. SCOPE AND SIGNIFICANCEThis review highlights recent advances in understanding the regulation of matrix metalloproteinases (MMPs) in skin and how this knowledge might be applied in patients to improve wound healing. Selected recent advances include microRNA (MiR) regulation, novel peptides, signal transduction, experimental therapies, and novel dressings. TRANSLATIONAL RELEVANCEWound healing is a complex multicellular process involving fibroblasts, keratinocytes, and endothelial cells as well as inflammatory cells. The healing process follows an orderly sequence of events incorporating four distinct, yet overlapping, phases: hemostasis, the inflammatory phase, the proliferation phase, and the remodeling phase. The phases of wound healing are regulated by cross talk between different groups of molecules, including extracellular matrix (ECM), integrins, growth factors, and MMPs. Migration of cells on ECM, and remodeling and degradation of the ECM by MMPs are key elements of wound repair. CLINICAL RELEVANCEChronic wounds, including pressure sores, venous ulcers, and diabetic ulcers, are a major clinical problem with considerable morbidity and associated financial costs. Excessive MMPs are a feature of chronic wounds. Regulation of MMP levels in wounds could lead to improved wound healing. OVERVIEWThe MMP family is a group of calcium-dependent zinc-containing enzymes that are involved in the degradation of ECM. Family members share structural ( Fig. 1) and sequence similarities, a flexible proline-rich hinge region, and a hemopexinlike C-terminal domain, which functions in recognition of substrates (usually ECM). Excep...
Metastatic bone disease (MBD) in advanced-stage cancer increases the risk of intractable bone pain, pathological skeletal fracture, spinal-cord compression and decreased survival. The disease manifestation course during MBD is largely driven by homotypic and heterotypic cellular interactions between invading tumor cells, osteoblasts and osteoclasts. The outcome is a sustained vicious cycle of bone matrix remodeling. Osteoclast-mediated bone degradation and subsequent bone loss are the hallmarks of secondary bone metastases from most solid tumors. An additional complication in prostate cancer is the predominance of osteosclerotic lesions typified by inappropriate bone production. Successful therapeutic strategies for the treatment of osteolytic MBD include the administration of intravenous bisphosphonates or subcutaneous inhibitors of receptor activator of nuclear factor κB ligand (RANKL). Inhibitors of SRC and cABL kinases and cathepsin K are under clinical investigation as potential anti-osteolytics. In contrast to the rapid progress being made in the development of anti-osteolytic therapies, the treatment of osteosclerotic MBD remains restricted to palliative radiotherapy for symptomatic solitary lesions and systemic taxane-based chemotherapy for widespread multiple lesions. This Review discusses the complex pathology of bone lesions in metastatic castration-resistant prostate cancer and focuses on new therapeutic strategies and targets that are emerging in preclinical studies.
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell-cell and cell-matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.
Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.