Knowledge of animal responses to fire is fundamental to wildlife management in fire-prone ecosystems. Fire can influence the occurrence of large herbivores by altering the structure and composition of vegetation. However, how fire affects herbivore occurrence in many ecosystems is poorly understood. Large herbivores may be attracted to burnt areas due to higher foraging quality. Conversely, herbivores may avoid burnt areas due to heightened predation risk. We tested the influence of vegetation type and fire history variables on the occurrence of macropods at Booderee National Park in south-eastern Australia. We documented macropod occurrence at 107 long-term monitoring sites using spotlighting surveys conducted between 2003 and 2019. We modelled relationships between the occurrence of the eastern grey kangaroo (Macropus giganteus) and the swamp wallaby (Wallabia bicolor) with three fire history variables; time since fire, fire frequency and burn context (the proportion of the area surrounding each site that was recently burnt), as well as their interaction with vegetation type. We found both macropod species selected recently burnt sites, likely due to a higher abundance of preferred plants at these sites. Increasing fire frequency was associated with a reduced occurrence of the eastern grey kangaroo. The occurrence of both macropod species was significantly higher in forest sites, possibly reflecting higher foraging quality of grass and shrub species compared to woodland, heathland and shrubland sites. We suggest that if fire is used as a management tool, it is important to recognise potential feedbacks from increased foraging pressure from large herbivores. Future fire management will need to avoid burning areas of sensitive vegetation if local herbivores display pyric herbivory responses, and/or avoid small-scale burns, which may concentrate foraging pressure.
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post‐fire herbivory is needed to better manage natural environments. We investigated the effects of post‐fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post‐fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore‐mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species‐rich understory plant community. Future research should aim to determine how vegetation change from post‐fire herbivory contributes to future fire risk.
Foraging decisions tend to drive individuals toward maximising energetic gains within a patchy environment. This study aims to determine the extent to which rainfall, and associated changes in food availability, can explain foraging decisions within a patchy urbanised landscape, using the Australian white ibis as a model species. Ibis density, food consumption rates and food abundance (both natural and anthropogenic) were recorded during dry and wet weather within urban parks in Sydney, Australia. Rainfall influenced ibis density in these urban parks. Of the four parks assessed, the site with the highest level of anthropogenic food and the lowest abundance of natural food (earthworms), irrespective of weather, was observed to have three times the density of ibis. Rainfall significantly increased the rate of earthworm consumption as well as their relative availability in all sites. Overall, these density and consumption measures indicate that anthropogenic derived foods, mainly from direct feeding by people, explain the apparent distribution of ibis across urban parks. However, there was evidence of prey-switching when the availability of natural foods increased following rainfall, perhaps reflecting selection of particular nutrients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.