This work applies natural language modeling to generate plausible strategic moves in the ancient game of Go. We train the Generative Pretrained Transformer (GPT-2) to mimic the style of Go champions as archived in Smart Game Format (SGF), which offers a text description of move sequences. The trained model further generates valid but previously unseen strategies for Go. Because GPT-2 preserves punctuation and spacing, the raw output of the text generator provides inputs to game visualization and creative patterns, such as the Sabaki project's (2020) game engine using auto-replays. Results demonstrate that language modeling can capture both the sequencing format of championship Go games and their strategic formations. Compared to random game boards, the GPT-2 fine-tuning shows efficient opening move sequences favoring corner play over less advantageous center and side play. Game generation as a language modeling task offers novel approaches to more than 40 other board games where historical text annotation provides training data (e.g., Amazons & Connect 4/6).
In Machine Learning, White Box Adversarial Attacks rely on knowing underlying knowledge about the model attributes. This works focuses on discovering to distrinct pieces of model information: the underlying architecture and primary training dataset. With the process in this paper, a structured set of input probes and the output of the model become the training data for a deep classifier. Two subdomains in Machine Learning are explored -image based classifiers and text transformers with GPT-2. With image classification, the focus is on exploring commonly deployed architectures and datasets available in popular public libraries. Using a single transformer architecture with multiple levels of parameters, text generation is explored by fine tuning off different datasets. Each dataset explored in image and text are distinguishable from one another. Diversity in text transformer outputs implies further research is needed to successfully classify architecture attribution in text domain.
Image classification is a common step in image recognition for machine learning in overhead applications. When applying popular model architectures like MobileNetV2, known vulnerabilities expose the model to counter -attacks, either mislabeling a known class or altering box location. This work proposes an automated approach to defend these models. We evaluate the use of multi-spectral image arrays and ensemble learners to combat adversarial attacks. The original contribution demonstrates the attack, proposes a remedy, and automates some key outcomes for protecting the model's predictions against adversaries. In rough analogy to defendin g cyber-networks, we combine techniques from both offensive ("red team") and defensive ("blue team") approaches, thus generating a hybrid protective outcome ("green team"). For machine learning, we demonstrate these methods with 3-color channels plus infrared for vehicles. The outcome uncovers vulnerabilities and corrects them with supplemental data inputs commonly found in overhead cases particularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.