The Hayward fault slips in large earthquakes and by aseismic creep observed along its surface trace. Dislocation models of the surface deformation adjacent to the Hayward fault measured with the global positioning system and interferometric synthetic aperture radar favor creep at approximately 7 millimeters per year to the bottom of the seismogenic zone along a approximately 20-kilometer-long northern fault segment. Microearthquakes with the same waveform repeatedly occur at 4- to 10-kilometer depths and indicate deep creep at 5 to 7 millimeters per year. The difference between current creep rates and the long-term slip rate of approximately 10 millimeters per year can be reconciled in a mechanical model of a freely slipping northern Hayward fault adjacent to the locked 1868 earthquake rupture, which broke the southern 40 to 50 kilometers of the fault. The potential for a major independent earthquake of the northern Hayward fault might be less than previously thought.
Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (BV, “bay view”), a compilation of over 200 horizontal surface velocities computed from campaign‐style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three‐dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ± 0.6 mm yr−1 directed toward N30.4°W ± 0.8° at San Francisco (±2σ). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right‐lateral slip rates in mm yr−1: San Gregorio fault, 2.4 ± 1.0; West Napa fault, 4.0 ± 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ± 1.0; and Mount Diablo thrust, 3.9 ± 1.0 of reverse slip and 4.0 ± 0.2 of right‐lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America‐Pacific to North America‐SNGV poles. The resulting present‐day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated.
[1] We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of $5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a M w = 6.77 ± 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip.
[1] We use GPS data to measure the aseismic slip along the central San Andreas fault (CSAF) and the deformation across adjacent faults. Comparison of EDM and GPS data sets implies that, except for small-scale transients, the fault motion has been steady over the last 40 years. We add 42 new GPS velocities along the CSAF to constrain the regional strain distribution. Shear strain rates are less than 0.083 ± 0.010 mstrain/yr adjacent to the creeping SAF, with 1 -4.5 mm/yr of contraction across the Coast Ranges. Dislocation modeling of the data gives a deep, long-term slip rate of 31-35 mm/yr and a shallow (0 -12 km) creep rate of 28 mm/yr along the central portion of the CSAF, consistent with surface creep measurements. The lower shallow slip rate may be due to the effect of partial locking along the CSAF or reflect reduced creep rates late in the earthquake cycle of the adjoining SAF rupture zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.