As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from targetbased antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.acetylcoenzyme A carboxylase ͉ biotin carboxylase ͉ crystal structure ͉ high-throughput screening ͉ fatty acid biosynthesis
In this report, we look at a range of classes of reaction involving microwave heating and show how different processing techniques can be used to address scale-up needs. We look at both batch and continuous-flow processing. We have shown that when using batch methodologies working using an open reaction vessel offers operational advantages while still giving good yields of desired products. In cases where open-vessel conditions are not amenable or where particularly volatile or toxic reagents are used, parallel sealed vessels can offer an alternative approach. For continuousflow processing, homogeneity of the reaction mixture is key. When the mixture is homogeneous, it is possible to move from smallscale sealed-vessel conditions to the continuous-flow apparatus without any modification of reaction conditions or loss in product yield. When either the starting materials or the product mixture contains particulate matter, continuous processing can prove a challenge, but reoptimization of reaction conditions as well as reduction of the concentration may allow these difficulties to be overcome.
[reaction: see text] We demonstrate that microwave irradiation can dramatically accelerate reaction rates for spatially addressable library synthesis on planar membrane supports. The development of a robust support/linker system, microwave-assisted synthesis of small molecule test libraries, and methods for solid-phase scale-up on cellulose are described.
There is an urgent, global need for the development of new antibacterial agents. We have applied the small-molecule macroarray approach to the synthesis and screening of antibacterial compounds active against the Gram-positive pathogen Staphylococcus aureus. Several macroarrays of 1,3-diphenyl-2-propen-1-ones (chalcones), cyanopyridines, and pyrimidines were synthesized on a planar cellulose support system on the order of days. This support system was found to be highly compatible with antibacterial assay formats, including disk-diffusion and agar-overlay visualization methods. Further, sufficient compound was isolated from each spot of the macroarray for both compound characterization and minimum inhibitory concentration (MIC) estimation. Analysis of the small-molecule macroarrays in these assays uncovered a set of antibacterial agents with in vitro MIC values against methicillin-resistant S. aureus comparable to certain antibacterial drugs in use today.
A range of synthetic transformations have been scaled up successfully using a sealed-vessel multimode microwave unit. These include metal-catalyzed couplings, synthesis of heterocycles, reactions under an atmosphere of reactive gas and two-step one-pot procedures. Also, observations have been made along the way that are of use to chemists addressing scale-up of microwave-promoted reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.