PURPOSE. A growing body of evidence points to complement dysregulation in diabetes. Early studies have indicated the presence of complement components inside the eye in patients with diabetic retinopathy, but these data have been confounded by leakage of proteins from the systemic circulation into the vitreous cavity. METHODS. We took samples of plasma and vitreous from patients with and without proliferative diabetic retinopathy (PDR) and measured levels of 16 complement components as well as albumin. We employed a normalized ratio using local and systemic complement and albumin levels to control for vascular leakage into the vitreous cavity. RESULTS. Before normalizing, we found significantly higher levels of 16 complement components we measured in PDR eyes compared to controls. After normalizing, levels of C4, factor B, and C5 were decreased compared to controls, while C3a and Ba levels were elevated compared to controls. We also found higher ratios of C3a/C3, C5a/C5, and Ba/factor B in PDR eyes compared to controls. CONCLUSIONS. We found evidence of local, intraocular activation of C3, C5, and factor B. The normalized data suggest involvement of the alternative complement pathway. By showing activation of specific complement components in PDR, this study identifies targets for diagnostic and therapeutic potential.
Purpose A growing body of evidence suggests complement dysregulation is present in the vitreous of patients with diabetic eye disease. Further translational study could be simplified if aqueous—as opposed to vitreous—were used to sample the intraocular complement environment. Here, we analyze aqueous samples and assess whether a correlation exists between aqueous and vitreous complement levels. Methods We collected aqueous, vitreous, and plasma samples from patients with and without proliferative diabetic retinopathy (PDR) undergoing vitrectomy. We assessed correlation between complement levels in aqueous and vitreous samples after using a normalizing ratio to correct for vascular leakage. Spearman correlation coefficients were used to assess the correlation between complement levels in the aqueous and vitreous. Results Aqueous samples were obtained from 17 cases with PDR and 28 controls. In all patients, aqueous Ba, C3a, and albumin levels were strongly correlated with vitreous levels (Spearman correlation coefficient of 0.8 for Ba and C3a and 0.7 for albumin; all P values < 0.0001). In PDR eyes only, aqueous and vitreous C3a levels were significantly correlated (Spearman correlation coefficient 0.7; P = 0.002), whereas in control eyes, both Ba and C3a (Spearman correlation coefficients of 0.7; P < 0.0001) were significantly correlated. Conclusions A strong correlation exists between aqueous and vitreous complement levels in diabetic eye disease. Translational Relevance The results establish that accurate sampling of the intraocular complement can be done by analyzing aqueous specimens, allowing for the rapid and safe measurement of experimental complement targets and treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.