Radiation therapy dose escalation using stereotactic body radiation therapy may significantly improve both local control (LC) and overall survival (OS) for patients with inoperable pancreas cancer. However, ablative dose cannot be routinely offered because of the risk of causing severe injury to adjacent normal organs. Stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) represents a novel technique that may achieve safe delivery of ablative dose and improve long-term outcomes. Methods and Materials: We performed a single institution retrospective analysis of 35 consecutive pancreatic cancer patients treated with SMART in mid-inspiration breath hold on an MR-linear accelerator. Most had locally advanced disease (80%) and received induction chemotherapy (91.4%) for a median 3.9 months before stereotactic body radiation therapy. All were prescribed 5 fractions delivered in consecutive days to a median total dose of 50 Gy (BED 10 100 Gy 10), typically with a 120% to 130% hotspot. Elective nodal irradiation was delivered to 20 (57.1%) patients. No patient had fiducial markers placed and all were treated with continuous intrafraction MR visualization and automatic beam triggering. Results: With median follow-up of 10.3 months from SMART, acute (2.9%) and late (2.9%) grade 3 toxicities were uncommon. Oneyear LC, distant metastasis-free survival, progression-free survival, cause-specific survival, and OS were 87.8%, 63.1%, 52.4%, 77.6%, and 58.9%, respectively.
To compare stereotactic radiosurgery (SRS) plan quality metrics of manual forward planning (MFP) and Elekta Fast Inverse Planning TM (FIP)-based inversely optimized plans for patients treated with Gamma Knife®. Clinically treated, MFP SRS plans for 100 consecutive patients (115 lesions; 67 metastatic and 48 benign) were replanned with the FIP dose optimizer based on a convex linear programming formulation. Comparative plans were generated to match or exceed the following metrics in order of importance: Target Coverage (TC), Paddick Conformity Index (PCI), beam-on time (BOT), and Gradient Index (GI). Plan quality metrics and delivery parameters between MFP and FIP were compared for all lesions and stratified into subgroups for further analysis. Additionally, performance of FIP for multiple punctate ( < 4 mm) metastatic lesions on a subset of cases was investigated. A Wilcoxon signed-rank test for non-normal distributions was used to assess the statistical differences between the MFP and FIP treatment plans. Overall, 76% (87/115) of FIP plans showed a statistically significant improvement in plan quality compared to MFP plans. As compared to MFP, FIP plans demonstrated an increase in the median PCI by 1.1% ( p < 0.01), a decrease in GI by 3.7% ( p < 0.01), and an increase in median number of shots by 74% ( p < 0.01). TC and BOT were not statistically significantly different between MFP and FIP plans ( p > 0.05). FIP plans showed a statistically significant increase in use of 16 mm ( p < 0.01) and blocked shots ( p < 0.01), with a corresponding decrease in 4 mm shots ( p < 0.01). Use of multiple shots per coordinate was significantly higher in FIP plans ( p < 0.01). The FIP optimizer failed to generate a clinically acceptable plan in 4/115 (3.5%) lesions despite optimization parameter changes. The mean optimization time for FIP plans was 5.0 min (Range: 1.0 -10.0 min). In the setting of multiple punctate lesions, PCI for FIP was significantly improved ( p < 0.01) by changing the default low-dose/BOT penalty optimization setting from a default of 50/50 to 75-85/40. FIP offers a significant reduction in manual effort for SRS treatment planning while achieving comparable plan quality to an expert planner-substantially improving overall planning efficiency. FIP plans employ a non-intuitive increased use of blocked sectors and shot-in-shot technique to achieve high quality plans. Several FIP plans failed to achieve clinically acceptable treatments and warrant further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.