This paper describes a new methodology to quantify the variation in the output of a computational fluid dynamics model for block and ash flows, when the digital elevation model (DEM) of the terrain and other inputs are given as a range of possible values with a prescribed uncertainty. Integrating these variations in the possible flows as a function of input uncertainties provides well-defined hazard probabilities at specific locations, i.e. a hazard map. Earlier work provided a methodology for assessing hazards based on variations in flow initiation and friction parameters. This paper extends this approach to include the effect of terrain error and uncertainty. The results are based on potential flows at Mammoth Mountain, CA, and Galeras Volcano, Colombia. The analysis establishes the soundness of the approach and the effect of including the uncertainty in DEMs in the construction of probabilistic hazard maps.
The Open XDMoD portal provides a rich set of analysis and charting tools that let users quickly display a wide variety of job accounting metrics over any desired timeframe. Two additional tools, which provide quality-of-service metrics and job-level performance data, have been developed and integrated with Open XDMoD to extend its functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.