The proto-oncogene ets-1 is the founding member of a new family of eukaryotic transcriptional regulators. Using deletion mutants of murine ets-1 cDNA expressed in Escherichia coli, we show that the DNA-binding domain corresponds closely to the ETS domain, an 85-amino-acid region that is conserved among ets family members. To investigate the specificity of DNA binding of the ETS domain, we mapped the DNA contacts of a monomeric Ets-1 fragment by chemical protection and interference assays. DNA backbone interactions span a 20-nucleotide region and are localized on one face of the helix. Close phosphate and base contacts are restricted to 10 central nucleotides. Contacts map to the major groove in the center of the site. Flanking minor groove interactions also are predicted. To determine the sequence preference in the close contact zone, we selected a pool of high-affinity binding sites using a purified Ets-1 carboxy-terminal fragment. Our Ets-l-selected consensus, 5'-A/GCCGGAA/TGT/C-3', differs from the binding consensus for the Drosophila ETS domain protein E74A, suggesting that specificity of action of ets family members is mediated by the ETS domain. Compared to other well-characterized classes of DNA-binding proteins, Et8-1 produces a unique pattern of DNA contacts. These studies demonstrate that the ETS domain proteins bind DNA in a novel manner.
All major classes of protein chaperones, including DnaK (the Hsp70 eukaryotic equivalent) and GroEL (the Hsp60 eukaryotic equivalent) have been found in Escherichia coli. Molecular chaperones enhance the yields of correctly folded polypeptides by preventing aggregation and even by disaggregating certain protein aggregates. Previously, we identified the ClpX heat‐shock protein of E. coli because it enables the ClpP catalytic protease to degrade the bacteriophage lambda O replication protein. Here we report that ClpX alone possesses all the properties expected of a molecular chaperone protein. Specifically, it can protect the lambda O protein from heat‐induced aggregation, disaggregate preformed lambda O aggregates, and even promote efficient binding of lambda O to its DNA recognition sequence. A lambda O‐ClpX specific protein‐protein interaction can be detected either by a modified ELISA assay or through the stimulation of ClpX's weak ATPase activity by lambda O. Unlike the behaviour of the major DnaK and GroEL chaperones, ClpX requires the presence of ATP or its non‐hydrolysable analogue ATP‐gamma‐S for efficient interaction with other proteins including the protection of lambda O from aggregation. However, ClpX's ability to disaggregate lambda O aggregates requires hydrolysable ATP. We propose that the ClpX protein is a bona fide chaperone, whose biological role includes the maintenance of certain polypeptides in a form competent for proteolysis by the ClpP protease. Furthermore, our results suggest that the ClpX protein also performs typical chaperone protein functions independent of ClpP.
DNA binding by the eukaryotic transcription factor Ets-1 is negatively regulated by an intramolecular mechanism. Quantitative binding assays compared the DNA-binding activities of native Ets-1, three deletion mutants, and three tryptic fragments. Ets-1 and activated Ets-1 polypeptides differed in DNA-binding affinity as much as 23-fold. Inhibition was mediated by two regions flanking the minimal DNA-binding domain. Both regions regulated affinity by enhancing dissociation of the protein-DNA complex. Three lines of evidence indicated that inhibition requires cooperative interaction between the two regions: first, the two inhibitory regions acted through a common mechanism; second, neither region functioned independently of the other; finally, mutation of the C-terminal inhibitory region altered the conformation of the N-terminal inhibitory region. In addition, partial proteolysis detected an identical altered conformation in the N-terminal inhibitory region of Ets-1 bound to DNA. This finding suggested that repression is transiently disrupted during DNA binding. These results provide evidence that the two inhibitory regions of Ets-1 are structurally, as well as functionally, coupled. In addition, conformational change is shown to be a critical component of the inhibition mechanism. A cooperative, allosteric model of autoinhibition is described. Autoinhibition of Ets-1 could be relieved by either protein partner(s) or posttranslational modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.