The number of applications of informatics or data-driven discovery is growing in many fields, including materials science. The large amount of data that is readily available, combined with high-level statistical algorithms, is proving to be extremely useful in developing complex predictive models with little to no human supervision or bias. However, in the field of soft matter, which includes complex materials such as polymers, liquids, emulsions, colloids, and gels, there is a slower adoption of informatics strategies than in adjacent fields. Here, the current state of soft matter informatics is discussed. Challenges specific to soft materials, including data classification, various degrees of organization at multiple length scales, and process-dependent properties require unique approaches by researchers in order to develop robust informatics approaches in soft matter. The current ability to extract and analyze the information from the PoLyInfo database is demonstrated by the fitting of the Flory-Fox equation for glass transition temperature for several polymers. This Progress Report serves to introduce and excite the scientific community about the remarkable potential of informatics for exploring the properties of soft materials.
Ligand-functionalized inorganic nanoparticles, also known as monolayer-protected nanoparticles, offer great potential as vehicles for in vivo delivery of drugs, genes, and other therapeutics. These nanoparticles offer highly customizable chemistries independent of the size, shape, and functionality imparted by the inorganic core. Their success as drug delivery agents depends on their interaction with three major classes of biomolecules: nucleic acids, proteins, and membranes. Here, the authors discuss recent advances and open questions in the field of nanoparticle ligand design for nanomedicine, with a focus on atomic-scale interactions with biomolecules. While the importance of charge and hydrophobicity of ligands for biocompatibility and cell internalization has been demonstrated, ligand length, flexibility, branchedness, and other properties also influence the properties of nanoparticles. However, a comprehensive understanding of ligand design principles lies in the cost associated with synthesizing and characterizing diverse ligand chemistries and the ability to carefully assess the structural integrity of biomolecules upon interactions with nanoparticles.
Since the launch of the Materials Genome Initiative (MGI) the field of materials informatics (MI) emerged to remove the bottlenecks limiting the pathway towards rapid materials discovery. Although the machine learning (ML) and optimization techniques underlying MI were developed well over a decade ago, programs such as the MGI encouraged researchers to make the technical advancements that make these tools suitable for the unique challenges in materials science and engineering. Overall, MI has seen a remarkable rate in adoption over the past decade. However, for the continued growth of MI, the educational challenges associated with applying data science techniques to analyse materials science and engineering problems must be addressed. In this paper, we will discuss the growing use of materials informatics in academia and industry, highlight the need for educational advances in materials informatics, and discuss the implementation of a materials informatics course into the curriculum to jump-start interested students with the skills required to succeed in materials informatics projects.
RNA-based therapeutics hold a great promise in treating a variety of diseases. However, double-stranded RNAs (dsRNAs) are inherently unstable, highly charged, and stiff macromolecules that require a delivery vehicle. Cationic ligand functionalized gold nanoparticles (AuNPs) are able to compact nucleic acids and assist in RNA delivery. Here, we use large-scale all-atom molecular dynamics simulations to show that correlations between ligand length, metal core size, and ligand excess free volume control the ability of nanoparticles to bend dsRNA far below its persistence length. The analysis of ammonium binding sites showed that longer ligands that bind deep within the major groove did not cause bending. By limiting ligand length and, thus, excess free volume, we have designed nanoparticles with controlled internal binding to RNA's major groove. NPs that are able to induce RNA bending cause a periodic variation in RNA's major groove width. Density functional theory studies on smaller models support large-scale simulations. Our results are expected to have significant implications in packaging of nucleic acids for their applications in nanotechnology and gene delivery.
All-aqueous synthesis of silica-encapsulated quantum dots with functional shells Huanhuan Feng [abc], Jan Bart ten Hove [d] , Tingting Zheng [ae] , Aldrik H. Velders [d] and Joris Sprakel* [a] We present a simple yet versatile method for encapsulating water-dispersed quantum dots (QDs) in a silica shell. As our approach, does not require ligand exchange, the colloidal stability of the quantum dots is maintained throughout the process, which results in monodisperse core-shell particles of individual quantum dots with a well-defined silica shell whose thickness can be accurately controlled. While other methods often result in a reduction of luminescence, our approach can retain all or even increases the quantum efficiency of the semiconductor dots. We also show how amine-functional groups can be expressed at the surface of the silica shell, while retaining QD photoluminescence properties, allowing further surface functionalization. Finally, we demonstrate the versatility of this strategy by including dopants into the silica shells to tailor the spectral response of the core-shell particles by energy transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.