Hemocyanins are large multi-subunit copper proteins that transport oxygen in many arthropods and molluscs. Comparison of the amino acid sequence data for seven different subunits of arthropod hemocyanins from crustaceans and chelicerates shows many highly conserved residues and extensive regions of near identity. This correspondence can be matched closely with the three domain structure established by x-ray crystallography for spiny lobster hemocyanin. The degree of identity is particularly striking in the second domain of the subunit that contains the six histidines which ligate the two oxygen-binding copper atoms. The polypeptide architecture of spiny lobster hemocyanin appears to be the same in all arthropods. This structure must therefore be at least as old as the estimated time of divergence of crustaceans and chelicerates, about 540 to 600 million years ago.
PCM-22, a metal-organic framework material comprising triphenylphosphine and Ln 3+ ions (Ln = Pr-Yb), exhibits solid-state luminescence at room temperature. Mixed-metal versions of PCM-22 that contain controlled amounts of Eu 3+ , Gd 3+ , and Tb 3+ function as highly sensitive, broad-scope solid-state sensors that can rapidly identify unknown solvents by providing a unique ''eight-factor'' fingerprint. The sensors allow for immediate solvent identification via color changes that are obvious to the naked eye and also permit quantitative chemical analysis by uncomplicated spectrophotometry. These same materials achieve quantitative detection of H 2 O in D 2 O from 10 to 120,000 ppm. The detection of trace H 2 O is also demonstrated in a range of common solvents, including those incompatible with conventional laboratory titration methods.
Light-emitting electrochemical cells (LEECs) from small molecules, such as iridium complexes, have great potential as low-cost emissive devices. In these devices, ions rearrange during operation to facilitate carrier injection, bringing about efficient operation from simple, single-layer devices. Prior work has shown that the luminance, efficiency, and responsiveness of iridium LEECs is greatly enhanced by the inclusion of small fractions of lithium salts, but much remains to be understood about the origin of this enhancement. Recent work with planar devices demonstrates that lithium additives in iridium LEECs enhance double-layer formation. However, the quantitative influence of lithium salts on the underlying physics of conventional thin-film, sandwich structure LEECs, which beneficially operate at low voltages and generate higher luminance, has yet to be clarified. Here, we use electrochemical impedance spectroscopy to discern the impact of the lithium salt concentration on double-layer formation within the device and draw correlations with performance metrics, such as current, luminance, and external quantum efficiency.
The reaction between non-aqueous uranyl silylamide (UO[N(SiMe)]·2THF) under anaerobic conditions or uranyl acetate (UO(OAc)·2HO) under standard laboratory conditions and dipyriamethryin affords a bench-stable uranyl complex. Competition studies as well as DFT calculations provide support for the observed selectivity for the uranyl cation over trivalent lanthanide and multiple transition metal precursors.
Proton-coupled electron transfer (PCET) is an important chemical and biological phenomenon. It is attractive as an on-off switching mechanism for redox-active synthetic systems but has not been extensively exploited for this purpose. Here we report a core-modified planar weakly antiaromatic/nonaromatic octaphyrin, namely, a [32]octaphyrin(1.0.1.0.1.0.1.0) (1) derived from rigid naphthobipyrrole and dithienothiophene (DTT) precursors, that undergoes proton-coupled two-electron reduction to produce its aromatic congener in the presence of HCl and other hydrogen halides. Evidence for the production of a [4 n + 1] π-electron intermediate radical state is seen in the presence of trifluoroacetic acid. Electrochemical analyses provide support for the notion that protonation causes a dramatic anodic shift in the reduction potentials of octaphyrin 1, thereby facilitating electron transfer from halide anions (viz. I, Br, and, Cl). Electron-rich molecules, such as tetrathiafulvene (TTF), phenothiazine (PTZ), and catechol, were also found to induce PCET in the case of 1. Both the oxidized and two-electron reduced forms of 1 were characterized by X-ray diffraction analyses in the solid state and in solution via spectroscopic means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.