Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one‐ and six‐day) storage durations in the predominantly carbonate aquifer.
Recovery efficiency for both ASR tests reported here was 54%. Successive ASR tests increased aquifer permeability of the Santee Limestone/Black Mingo Aquifer. It is likely that aquifer permeability increased during short storage periods due to dissolution of carbonate minerals and amorphous silica in aquifer material by treated drinking water. Dissolution resulted in an estimated 0.3% increase in pore volume of the permeable zones. Ground water composition generally evolved from a sodium‐calcium bicarbonate water to a sodium chloride water during storage and recovery. After short duration, stored water can exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) for chloride (250 mg/L). However, sulfate, fluoride, and tri‐halomethane concentrations remained below MCLs during storage and recovery.
The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that estimate daily water-level data at ungaged locations, and applications that generate derived hydrologic data across the freshwater part of the Greater Everglades landscape. Version 3 (V3) of the EDEN interpolation surface-water model is the most recent update, replacing the version 2 (V2) model released in 2011. The primary revision for the V3 model is the switch to the R programming language to create a more efficient and portable EDEN code relative to V2, without reliance on proprietary software. Using R, the interpolation script runs over 10 times faster and is more easily updated, for example, to accommodate changes in the gage network or to incorporate R software updates. Additional revisions made for the V3 model include updates to the interpolation model, the gage network, and groundwater-level estimations. The EDEN model domain in the Greater Everglades and Big Cypress National Preserve is divided into subdomains that are based on hydrologic boundaries. In the V3 model, the number of subdomains was increased from five to eight, which allows hydrologic boundaries, such as levees and canals, to be better represented in the interpolation scheme. Five pseudogages were added to constrain the water-level surface at subdomain boundaries. Changes made to the water-level gage network between the implementation of the V2 and V3 models are incorporated, and groundwater-level estimations are added, which are important information for hydrologic and ecological studies. Summary model performance statistics indicate similar accuracy in water-level surfaces generated by the V3 and V2 models, with a root mean square error of 4.78 centimeters for both interpolation models against independent water-level measurements. Providing stability and continuity for the EDEN user community, the V3 model closely replicates the V2 model, with a root mean square difference of 3.87 centimeters for interpolated surfaces from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.