Conflation between omnivory and dietary generalism limits ecological and evolutionary analyses of diet, including estimating contributions to speciation and diversification. Additionally, categorizing species into qualitative dietary classes leads to information loss in these analyses. Here, we constructed two continuous variables — degree of carnivory (i.e., the position along the continuum from complete herbivory to complete carnivory) and degree of dietary specialization (i.e., the number and variety of food resources utilized) — to elucidate their histories across Mammalia, and to tease out their independent contributions to mammalian speciation. We observed that degree of carnivory significantly affected speciation rate across Mammalia, whereas dietary specialization did not. We further considered phylogenetic scale in diet-dependent speciation and saw that degree of carnivory significantly affected speciation in ungulates, carnivorans, bats, eulipotyphlans, and marsupials, while the effect of dietary specialization was only significant in carnivorans. Across Mammalia, omnivores had the lowest speciation rates. Our analyses using two different categorical diet variables led to contrasting signals of diet-dependent diversification, and subsequently different conclusions regarding diet's macroevolutionary role. We argue that treating variables such as diet as continuous instead of categorical reduces information loss and avoids the problem of contrasting macroevolutionary signals caused by differential discretization of biologically continuous traits.
Color variation is a frequent evolutionary substrate for camouflage in small mammals but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus, exhibits a range of colors including the cinnamon morph which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (P < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that impaired protein localization and decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos, but is not fixed across the range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.