We use the Yang-Mills gradient flow to study the mixing of CP-violating pure gauge operators in continuum QCD with special attention to Weinberg's d=6 purely gluonic operator. The gradient flow allows for a relatively clear derivation of the Wilson coefficients of the CP-violating effective Hamiltonian. This calculation is the first step towards a high-energy matching of matrix elements involving the CP-violating operators between the perturbative and lattice regimes.
The quark chromoelectric dipole (qCEDM) operator is a CP-violating operator describing, at hadronic energies, beyond-the-standard-model contributions to the electric dipole moment of particles with nonzero spin. In this paper we define renormalized dipole operators in a regularization-independent scheme using the gradient flow, and we perform the matching at one loop in perturbation theory to renormalized operators of the same and lower dimension in the more familiar MS scheme. We also determine the matching coefficients for the quark chromo-magnetic dipole operator (qCMDM), which contributes for example to matrix elements relevant to CP-violating and CP-conserving kaon decays. The calculation provides a basis for future lattice QCD computations of hadronic matrix elements of the qCEDM and qCMDM operators.
The gradient flow exponentially suppresses ultraviolet field fluctuations and removes ultraviolet divergences (up to a multiplicative fermionic wavefunction renormalization). It can be used to describe real-space Wilsonian renormalization group transformations and determine the corresponding beta function. We propose a new nonperturbative renormalization scheme for local composite fermionic operators that uses the gradient flow and is amenable to lattice QCD calculations. We present preliminary nonperturbative results for the running of quark bilinear operators in this scheme and outline the calculation of perturbative matching to the MS scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.