For more than a decade the Arp2/3 complex, a handful of nucleation-promoting factors, and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have brought a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASH, WHAMM, and JMY stimulate Arp2/3 complex activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, Cordon-bleu, and Leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization.
The cellular functions of the actin cytoskeleton require precise regulation of both the initiation of actin polymerization and the organization of the resulting filaments. The actin-related protein-2/3 (ARP2/3) complex is a central player in this regulation. A decade of study has begun to shed light on the molecular mechanisms by which this powerful machine controls the polymerization, organization and recycling of actin-filament networks, both in vitro and in the living cell.
The pathogenic bacterium Listeria monocytogenes is capable of directed movement within the cytoplasm of infected host cells. Propulsion is thought to be driven by actin polymerization at the bacterial cell surface, and moving bacteria leave in their wake a tail of actin filaments. Determining the mechanism by which L. monocytogenes polymerizes actin may aid the understanding of how actin polymerization is controlled in the cell. Actin assembly by L. monocytogenes requires the bacterial surface protein ActA and protein components present in host cell cytoplasm. We have purified an eight-polypeptide complex that possesses the properties of the host-cell actin polymerization factor. The pure complex is sufficient to initiate ActA-dependent actin polymerization at the surface of L. monocytogenes, and is required to mediate actin tail formation and motility. Two subunits of this protein complex are actin-related proteins (ARPs) belonging to the Arp2 and Arp3 subfamilies. The Arp3 subunit localizes to the surface of stationary bacteria and the tails of motile bacteria in tissue culture cells infected with L. monocytogenes; this is consistent with a role for the complex in promoting actin assembly in vivo. The activity and subunit composition of the Arp2/3 complex suggests that it forms a template that nucleates actin polymerization.
Actin filament assembly at the cell surface of the pathogenic bacterium Listeria monocytogenes requires the bacterial ActA surface protein and the host cell Arp2/3 complex. Purified Arp2/3 complex accelerated the nucleation of actin polymerization in vitro, but pure ActA had no effect. However, when combined, the Arp2/3 complex and ActA synergistically stimulated the nucleation of actin filaments. This mechanism of activating the host Arp2/3 complex at the L. monocytogenes surface may be similar to the strategy used by cells to control Arp2/3 complex activity and hence the spatial and temporal distribution of actin polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.