Somatic mutations of the H3F3A and HIST1H3B genes encoding the histone H3 variants, H3.3 and H3.1, were recently identified in high-grade gliomas arising in the thalamus, pons and spinal cord of children and young adults. However, the complete range of patients and locations in which these tumors arise, as well as the morphologic spectrum and associated genetic alterations remain undefined. Here, we describe a series of 47 diffuse midline gliomas with histone H3-K27M mutation. The 25 male and 22 female patients ranged in age from 2 to 65 years (median =14). Tumors were centered not only in the pons, thalamus, and spinal cord, but also in the third ventricle, hypothalamus, pineal region and cerebellum. Patients with pontine tumors were younger (median =7 years) than those with thalamic (median =24 years) or spinal (median =25 years) tumors. A wide morphologic spectrum was encountered including gliomas with giant cells, epithelioid and rhabdoid cells, primitive neuroectodermal tumor (PNET)-like foci, neuropil-like islands, pilomyxoid features, ependymal-like areas, sarcomatous transformation, ganglionic differentiation and pleomorphic xanthoastrocytoma (PXA)-like areas. In this series, histone H3-K27M mutation was mutually exclusive with IDH1 mutation and EGFR amplification, rarely co-occurred with BRAF-V600E mutation, and was commonly associated with p53 overexpression, ATRX loss (except in pontine gliomas), and monosomy 10.
Summary
Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.
Infant high grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histological review, methylation profiling, custom panel and genome/exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an 'intrinsic' spectrum of disease specific to the infant population. These included those with targetable MAP-kinase alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n=31), NTRK1/2/3 (n=21), ROS1 (n=9) and MET (n=4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly supports the concept that infant gliomas require a change in diagnostic practice and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.