Background Polycystic ovary syndrome (PCOS) is a common, complex genetic disorder affecting up to 15% of reproductive-age women worldwide, depending on the diagnostic criteria applied. These diagnostic criteria are based on expert opinion and have been the subject of considerable controversy. The phenotypic variation observed in PCOS is suggestive of an underlying genetic heterogeneity, but a recent meta-analysis of European ancestry PCOS cases found that the genetic architecture of PCOS defined by different diagnostic criteria was generally similar, suggesting that the criteria do not identify biologically distinct disease subtypes. We performed this study to test the hypothesis that there are biologically relevant subtypes of PCOS. Methods and findings Using biochemical and genotype data from a previously published PCOS genome-wide association study (GWAS), we investigated whether there were reproducible phenotypic subtypes of PCOS with subtype-specific genetic associations. Unsupervised hierarchical cluster analysis was performed on quantitative anthropometric, reproductive, and metabolic traits in a genotyped cohort of 893 PCOS cases (median and interquartile range [IQR]: age = 28 [25-32], body mass index [BMI] = 35.4 [28.2-41.5]). The clusters were replicated in an independent, ungenotyped cohort of 263 PCOS cases (median and IQR: age = 28 [24-33], BMI = 35.7 [28.4-42.3]). The clustering revealed 2 distinct PCOS subtypes: a "reproductive" group (21%-23%), characterized by higher luteinizing hormone (LH) and sex hormone binding globulin (SHBG) levels with relatively low BMI and insulin levels, and a "metabolic" group
Polycystic ovary syndrome (PCOS) is among the most common disorders of reproductive-age women, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Context Polycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5% to15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date. Objective The objective of this study was to test whether rare genetic variants contribute to PCOS pathogenesis. Design, Patients, and Methods We performed whole-genome sequencing on DNA from 261 individuals from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis. Results We found rare variants in DENND1A (P = 5.31 × 10−5, adjusted P = 0.039) that were significantly associated with reproductive and metabolic traits in PCOS families. Conclusions Common variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.
Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the isoform level. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) and microarray platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples from The Cancer Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting that fold change normalization against a control is an important step for integrating expression data across platforms. Based on RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM was more highly correlated with MMBGX for the subset of transcripts that are highly variable across the samples. eXpress appears to be most successful in discriminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed transcripts. The results also reinforce how potentially important isoform-level expression changes can be masked by gene-level estimates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.