A highly resolved computation o f the flow past a sphere at Reynolds number Re = 3700 using a finite element method (FEM)-based residual-based variational multiscale (RBVMS) formulation is performed. Both uniform and turbulent inflow conditions are considered with the uniform flow case validated against a previous direct numerical sim ulation (DNS) study. We find that, as a result o f adding free-stream turbulence o f moder ate intensity, the drag force on the sphere is increased, the length o f the recirculation bubble is reduced dramatically, and the near-wake turbulence is significantly more ener getic than in case o f uniform inflow. In the case o f uniform inflow, we find that the solu tion exhibits low temporal frequency modes, which necessitate long-time simulations to obtain high-fidelity statistical averages. Subjecting the sphere to turbulent inflow removes the low-frequency modes from the solution and enables shorter-time simulations to achieve converged flow statistics.
Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.