The Epstein-Barr virus (EBV) nuclear antigen 3B (EBNA-3B) is considered nonessential for EBV-mediated B-cell growth transformation in vitro based on three virus isolates with EBNA-3B mutations. Two of these isolates could potentially express truncated EBNA-3B products, and, similarly, we now show that the third isolate, IB4, has a point mutation and in-frame deletion of 263 amino acids. In order to test whether a virus with EBNA-3B completely deleted can immortalize B-cell growth, we first cloned the EBV genome as a bacterial artificial chromosome (BAC) and showed that the BAC-derived virus was B-cell immortalization competent. Deletion of the entire EBNA-3B open reading frame from the EBV BAC had no adverse impact on growth of EBV-immortalized B cells, providing formal proof that EBNA-3B is not essential for EBV-mediated B-cell growth transformation in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.