Antibodies and T cells specific for tumor-associated antigens (TAA) are found in individuals without cancer but with a history of infections and are associated with lowered cancer risk. We hypothesized that those immune responses were generated to transiently abnormally expressed self-antigens on infected cells (disease-associated antigens, DAA) and later on tumor cells as TAA. We tested this hypothesis in mice with a history of infection with lymphocytic choriomeningitis virus (LCMV) Armstrong strain (Arm) that causes acute infection when injected intraperitoneally or CL-13 strain that establishes chronic infection when injected intravenously. Both elicited antibodies and T cells that recognized DAA/TAA on infected cells and on mouse tumors. When challenged with those tumors, Arm-experienced mice controlled tumors better than CL-13-experienced mice or infection-naïve mice. We characterized 7 DAA/TAA that were targets of LCMV-elicited antitumor immunity. We then vaccinated mice with tumor-derived gp96, a heat shock protein that binds a variety of TAA peptides, including those expressed on virus-infected cells as DAA. Tumor-gp96 vaccine induced DAA/TAA-specific immunity. When challenged with Cl-13, the mice showed lower viral copy numbers both early (day 7) and late (day 70) in infection. DAA/TAA may be immunogenic and safe candidates to develop vaccines to control both infections and cancer.
The ability of immune cells to sense changes associated with malignant transformation as early as possible is likely to be important for the successful outcome of cancer immunosurveillance. In this process, the immune system faces a trade-off between elimination of cells harboring premalignant or malignant changes, and autoimmune pathologies. We hypothesized that the immune system has therefore evolved a threshold for the stage of transformation from normal to fully malignant cells that first provides a threat (danger) signal requiring a response. We co-cultured human macrophages with a unique set of genetically related human cell lines that recapitulate successive stages in breast cancer development: MCF10A (immortalized, normal); MCFNeoT (benign hyperplasia); MCFT1 (atypical hyperplasia); MCFCA1 (invasive cancer). Using cytokines-based assays, we found that macrophages were inert towards MCF10A and MCFNeoT but were strongly activated by MCFT1 and MCFCA1 to produce inflammatory cytokines, placing the threshold for recognition between two premalignant stages, the earlier stage MCFNeoT and the more advanced MCFT1. The cytokine activation threshold paralleled the threshold for enhanced phagocytosis. Using proteomic and transcriptomic approaches, we identified surface molecules, some of which are well-known tumor-associated antigens, that were absent or expressed at low levels in MCF10A and MCFNeoT but turned on or over-expressed in MCFT1 and MCFCA1. Adding antibodies specific for two of these molecules, Annexin-A1 and CEACAM1, inhibited macrophage activation, supporting their role as cancer “danger signals” recognized by macrophages.
Introduction: A single arm trial (NCT007773097) and a double-blind, placebo controlled randomized trial (NCT02134925) were conducted in patients with newly diagnosed advanced colonic adenomas to test the safety and immunogenicity of the MUC1 antigen vaccine and its potential to prevent new adenoma formation. These are the first trials of a non-viral cancer vaccine administered in the absence of cancer. In both trials, the vaccine was safe and strongly immunogenic in 43% and 25% of participants (Responders), respectively. The lack of robust response in a significant number of participants suggested, for the first time, that even in a premalignant setting, the immune system may have already been exposed to regulatory influences that, in the case of the vaccine, determine who does and who does not respond. We hypothesized that there could be molecular and cellular differences in the immune competence between vaccine responders and non-responders, and that they could be identified by studying their pre-vaccination peripheral blood mononuclear cells (PBMCs). Methods: The two MUC1 vaccine trials are described in https://doi.org/10.1101/2022.10.05.22280474 and https://doi.org/10.1158%2F1940-6207.CAPR-12-0275. We performed single cell RNA-sequencing (scRNAseq) on banked pre-vaccination PBMCs from 16 Responders and 16 Non-Responders, determined by anti-MUC1 IgG response. Using differential gene expression (DGE), pathway enrichment, and network estimation analyses, we identified specific cell types, genes, and pathways that differ between responders and non-responders. Results: Pre-vaccination PBMCs from Responders contained a significantly higher percentage of CD4+ naive T cells, while Non-Responders showed significantly higher percentage of CD8+ T effector memory (TEM) cells and a higher percentage of CD16+ monocytes. DGE and gene interaction network analysis showed a higher level of expression of T cell activation genes, such as Fos and Jun, in the CD4+ naive T cells in Responders. Further network analysis showed that these genes were directly connected to response. We also found pre-vaccination specific gene ontology (GO) pathways for translational and transcriptional activity enriched in all cell types in Responders compared to Non-Responders. Conclusion: Our analyses identified candidate biomarkers that are predictive of a preventative cancer vaccine response. Thus, our results can be used for patient selection for vaccine administration. Furthermore, we identified cell type differences and transcriptional pathways that provide information of possible mechanisms of vaccine response. Citation Format: Daniel Y. Yuan, Michelle L. McKeague, Matthew T. Dracz, Olivera J. Finn, Panayiotis V. Benos. Single cell transcriptomics uncovers cellular and molecular differences in PBMCs of responders and non-responders to the MUC1 cancer vaccine given in the preventative setting [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6537.
During premalignant and malignant transformation, cells undergo antigenic changes that can be recognized by the immune system, and this can be leveraged both for immune prevention and therapy. One such change occurs with MUC1, or Mucin-1, a large variable number tandem repeat (VNTR)-containing transmembrane protein that is overexpressed and hypoglycosylated on a majority of precancerous and adenocarcinoma cells, including those of the colon, lung, breast, pancreas and ovaries. This tumor form of MUC1 is recognized by both cellular and humoral immunity. Healthy individuals at high risk of developing colon cancer due to a history of colonic polyps were enrolled in a clinical trial testing the feasibility of prophylactic vaccination against the tumor form of MUC1, also expressed on polyps (Kimura et al., 2013). Half the participants generated high levels of anti-MUC1 IgG antibodies, some of which were cloned to further analyze their tumor specificity and to potentially develop them as therapeutics for patients with cancer (Lohmueller et al., 2016). As these fully human IgG1 monoclonal antibodies (mAbs) were selected and affinity matured in healthy individuals who experienced no negative side effects to the vaccine in >10 years, it increases the likelihood that as therapeutics they will be safe. To study anti-tumor efficacy and mechanism(s) of action of 12 of these mAbs, tumor cells were co-incubated with immune cells in the presence of the mAbs, and each mAb’s ability to mediate antibody-dependent cellular cytotoxicity (ADCC) by NK cells, antibody-dependent cellular phagocytosis (ADCP) by monocytes, antibody-dependent trogocytosis/trogoptosis (ADCT) by neutrophils, antibody-dependent cytokine release (ADCR) and complement dependent cytotoxicity (CDC) was assessed. Several MUC1 mAbs examined could mediate ADCC, ADCP, ADCT and ADCR, with some mechanisms being cell-line dependent. One mAb was selected for in vivo testing and found to delay breast cancer growth and prolong survival in immunocompromised mice lacking T cells, B cells and NK cells, pointing to ADCP and ADCT as important anti-tumor functions. Additionally, the relationship between epitope location and immune effector functions was explored by creating different MUC1 constructs that vary epitope distance from the cell surface, number of epitopes, etc, to test properties of the target antigen that may affect antibody efficacy. These latter experiments revealed an increased efficiency in phagocytosis and trogocytosis when the mAbs bound an epitope that was both proximal to and anchored to the membrane. Notably, unlike published studies of rituximab and alemtuzumab, the amount of MUC1 mAb binding did not always correlate with increased effector function. Our results may inform not only the development of these MUC1-based therapies but more broadly future therapeutic mAb design against a variety of targets. Citation Format: Michelle L. McKeague, Jason Lohmueller, Matthew T. Dracz, Najla Saadallah, Jia Xue, Eric D. Ricci, William Lu, Olivera J. Finn. Patient-derived, vaccine-elicited, anti-MUC1 antibodies directly target tumor cells for elimination via multiple immune mechanisms [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB179.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.