The longevity-assurance activity of the tumor suppressor p53 depends on the levels of Δ40p53 (p44), a short and naturally occurring isoform of the p53 gene. As such, increased dosage of p44 in the mouse leads to accelerated aging and short lifespan. Here we show that mice homozygous for a transgene encoding p44 (p44+/+) display cognitive decline and synaptic impairment early in life. The synaptic deficits are attributed to hyperactivation of insulin-like growth factor 1 receptor (IGF-1R) signaling and altered metabolism of the microtubule-binding protein tau. In fact, they were rescued by either Igf1r or Mapt haploinsufficiency. When expressing a human or a ‘humanized’ form of the amyloid precursor protein (APP), p44+/+ animals developed a selective degeneration of memory-forming and -retrieving areas of the brain, and died prematurely. Mechanistically, the neurodegeneration was caused by both paraptosis- and autophagy-like cell deaths. These results indicate that altered longevity-assurance activity of p53:p44 causes memory loss and neurodegeneration by affecting IGF-1R signaling. Importantly, Igf1r haploinsufficiency was also able to correct the synaptic deficits of APP695/swe mice, a model of Alzheimer’s disease.
Fetal alcohol spectrum disorders (FASD) are the leading non-genetic cause of neurodevelopmental disability in children. Although alcohol is clearly teratogenic, environmental factors such as gravidity and socioeconomic status significantly modify individual FASD risk despite equivalent alcohol intake. An explanation for this variability could inform FASD prevention. Here we show that the most common nutritional deficiency of pregnancy, iron deficiency without anemia (ID), is a potent and synergistic modifier of FASD risk. Using an established rat model of third trimester-equivalent binge drinking, we show that ID significantly interacts with alcohol to impair postnatal somatic growth, associative learning, and white matter formation, as compared with either insult separately. For the associative learning and myelination deficits, the ID-alcohol interaction was synergistic and the deficits persisted even after the offsprings’ iron status had normalized. Importantly, the observed deficits in the ID-alcohol animals comprise key diagnostic criteria of FASD. Other neurobehaviors were normal, showing the ID-alcohol interaction was selective and did not reflect a generalized malnutrition. Importantly ID worsened FASD outcome even though the mothers lacked overt anemia; thus diagnostics that emphasize hematological markers will not identify pregnancies at-risk. This is the first direct demonstration that, as suggested by clinical studies, maternal iron status has a unique influence upon FASD outcome. While alcohol is unquestionably teratogenic, this ID-alcohol interaction likely represents a significant portion of FASD diagnoses because ID is more common in alcohol-abusing pregnancies than generally appreciated. Iron status may also underlie the associations between FASD and parity or socioeconomic status. We propose that increased attention to normalizing maternal iron status will substantially improve FASD outcome, even if maternal alcohol abuse continues. These findings offer novel insights into how alcohol damages the developing brain.
Poor self-control, lack of inhibition, and impulsivity contribute to the propensity of adolescents to engage in risky or dangerous behaviors. Brain regions (e.g., prefrontal cortex) involved in impulse-control, reward-processing, and decision-making continue to develop during adolescence, raising the possibility that an immature brain contributes to dangerous behavior during adolescence. However, very few validated animal behavioral models are available for behavioral neuroscientists to explore the relationship between brain development and behavior. To that end, a valid model must be conducted in the relatively brief window of adolescence and not use manipulations that potentially compromise development. The present experiments used three operant arrangements to assess whether adolescent rats differ from adults in measures of learning, behavioral inhibition, and impulsivity, within the aforementioned time frame without substantial food restriction. In Experiment 1, separate squads of rats were trained to lever-press and then transitioned to two types of extinction. Relative to their baselines, adolescent rats responded more during extinction than adults, suggesting that they were less sensitive to the abolishment of the reinforcement contingency. Experiment 2 demonstrated similar age-related differences during exposure to a differential reinforcement of low rates schedule, a test of behavioral inhibition. Lastly, in Experiment 3, adolescent's responding decreased more slowly than adults during exposure to a resetting delay of reinforcement schedule, suggesting impaired self-control. Results from these experiments suggest that adolescents exhibit impaired learning, behavioral inhibition and self-control, and in concert with recent reports, provide researchers with three behavioral models to more fully explore neurobiology of risk-taking behavior in adolescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.